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Abstract
This paper reviews concepts, principles and tools that have led to a coherent mathematical theory
of causation based on structural models. The theory provides solutions to a number of problems in
causal inference, including questions of confounding control, policy analysis, mediation, missing
data and the integration of data from diverse studies.
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1. Introduction

Recent advances in causal inference owe their development to two methodological princi-
ples. First, a commitment to understanding what reality must be like for a statistical routine
to succeed and, second, a commitment to represent reality in terms of data-generating mod-
els, rather than distributions of observed variables.

Encoded as nonparametric structural equations, these models have led to a fruitful sym-
biosis between graphs and counterfactuals that has unified the potential outcome framework
of Neyman, Rubin and Robins with the econometric tradition of Haavelmo, Marschak and
Heckman. In this symbiosis, counterfactuals emerge as natural byproducts of structural
equations and serve to formally articulate research questions of interest. Graphical models,
on the other hand, are used to encode scientific assumptions in a qualitative (i.e., non-
parametric) and transparent language, and to identify the testable implications of these
assumptions.

In Section 2 we define Structural Causal Models (SCM) and state the two fundamental
laws of causal inference: (1) how counterfactuals and probabilities of counterfactuals are
deduced from a given SCM and (2) how features of the observed data are shaped by the
graphical structure of a SCM.

Section 3 defines the challenge of identifying causal parameters and presents a complete
solution to the problem of nonparametric identification of causal effects. Given data from
observational studies and qualitative assumptions in the form of a graph with measured
and unmeasured variables, we need to decide algorithmically whether the assumptions are
sufficient for identifying causal effects of interest, what covariates should be measured and
what the statistical estimand is of the identified effect.

Section 4 summarizes mathematical results concerning nonparametric mediation, which
aims to estimate the extent to which a given effect is mediated by various pathways or
mechanisms. A simple set of conditions will be presented for estimating natural direct and
indirect effects in nonparametric models.

Section 5 deals with the problem of “generalizability” or “external validity”: under
what conditions can we take experimental results from one or several populations and apply
them to another population which is potentially different from the rest. A complete solution
to this problem will be presented in the form of an algorithm which decides whether a
specific causal effect is transportable and, if the answer is affirmative, what measurements
need be taken in the various populations and how they ought to be combined.
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Finally, Section 6 describes recent work on missing data and shows that, by viewing
missing data as a causal inference task, the space of problems can be partitioned into two
algorithmically recognized categories: those that permit consistent recovery from missing-
ness and those that do not.

To facilitate clarity and accessibility the major mathematical results will be highlighted
in the form of four “Summary Results,” and will be framed in boxes.

2. Counterfactuals and the Structural Causal Model (SCM)

At the center of the structural theory of causation lies a “structural model,” M , consisting
of two sets of variables, U and V , and a set F of functions that determine, or simulate how
values are assigned to each variable Vi ∈ V . Thus for example, the equation

vi = fi(v, u)

describes a physical process by which variable Vi is assigned the value vi = fi(v, u) in
response to the current values, v and u, of all variables in V and U . Formally, the triplet
< U, V, F > defines a structural causal model (SCM), and the diagram, that captures the
relationships among the variables is called the causal graph G (of M ). The variables in
U are considered “exogenous,” namely, background conditions for which no explanatory
mechanism is encoded in model M . Every instantiation U = u of the exogenous variables
uniquely determines the values of all variables in V and, hence, if we assign a probability
P (u) to U , it defines a probability function P (v) on V .

The basic counterfactual entity in structural models is the sentence: “Y would be y
had X been x in situation U = u,” denoted Yx(u) = y. Letting Mx stand for a modified
version of M , with the equation(s) of set X replaced by X = x, the formal definition of
the counterfactual Yx(u) reads:

Yx(u)
∆
= YMx(u). (1)

In words: The counterfactual Yx(u) in model M is defined as the solution for Y in the
“modified” submodel Mx. Galles and Pearl (1998) and Halpern (1998) have given a
complete axiomatization of structural counterfactuals, embracing both recursive and non-
recursive models (see also Pearl, 2009b, Chapter 7).

Since the distribution P (u) induces a well defined probability on the counterfactual
event Yx = y, it also defines a joint distribution on all Boolean combinations of such
events, for instance ‘Yx = y AND Zx′ = z,’ which may appear contradictory, if x 6= x′.
For example, to answer retrospective questions, such as whether Y would be y1 if X were
x1, given that in fact Y is y0 and X is x0, we need to compute the conditional probability
P (Yx1 = y1|Y = y0, X = x0) which is well defined once we know the forms of the
structural equations and the distribution of the exogenous variables in the model.

In general, the probability of the counterfactual sentence P (Yx = y|e), where e is any
propositional evidence, can be computed by the 3-step process (illustrated in Pearl, 2009b,
p. 207);

Step 1 (abduction): Update the probability P (u) to obtain P (u|e).

Step 2 (action): Replace the equations determining the variables in set X by X = x.

Step 3 (prediction): Use the modified model to compute the probability of Y = y.

In temporal metaphors, Step 1 explains the past (U) in light of the current evidence e;
Step 2 bends the course of history (minimally) to comply with the hypothetical antecedent
X = x; finally, Step 3 predicts the future (Y ) based on our new understanding of the past
and our newly established condition, X = x.
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2.1 The two principles of causal inference

Before describing specific applications of the structural theory, it will be useful to summa-
rize its implications in the form of two “principles,” from which all other results follow.

Principle 1: “The law of structural counterfactuals.”

Principle 2: “The law of structural independence.”

The first principle is described in Eq. (1) and instructs us how to compute counter-
factuals and probabilities of counterfactuals from a structural model. This, together with
principle 2 will allow us (Section 3) to determine what assumptions one must make about
reality in order to infer probabilities of counterfactuals from either experimental or passive
observations.

Principle 2, defines how structural features of the model entail dependencies in the data.
Remarkably, regardless of the functional form of the equations in the model and regardless
of the distribution of the exogenous variables U , if the latters are mutually independent and
the model is recursive, the distribution P (v) of the endogenous variables must obey certain
conditional independence relations, stated roughly as follows: whenever sets X and Y are
“separated” by a set Z in the graph, X is independent of Y given Z in the probability.

This “separation” condition, called d-separation (Pearl, 2000a, pp. 16–18) constitutes
the link between the causal assumptions encoded in the causal graph (in the form of missing
arrows) and the observed data.

Definition 1. (d-separation)
A set S of nodes is said to block a path p if either

1. p contains at least one arrow-emitting node that is in S, or

2. p contains at least one collision node that is outside S and has no descendant in S.

If S blocks all paths from set X to set Y , it is said to “d-separate X and Y,” and then,
variables X and Y are independent given S, written X⊥⊥Y |S.1

D-separation implies conditional independencies for every distribution P (v) that is
compatible with the causal assumptions embedded in the diagram. To illustrate, the dia-
gram in Fig. 1(a) impliesZ1⊥⊥Y |(X,Z3,W2), because the conditioning set S = {X,Z3,W2}
blocks all paths beween Z1 and Y . The set S = {X,Z3,W3} however leaves the path
(Z1, Z3, Z2,W2, Y ) unblocked (by virtue of the collider at Z3) and, so, the independence
Z1⊥⊥Y |(X,Z3,W3) is not implied by the diagram.

3. Intervention, Identification, and Causal Calculus

A central question in causal analysis is that of predicting the results of interventions, such as
those resulting from treatments or social programs, which we denote by the symbol do(x)
and define using the counterfactual Yx as2

P (y|do(x)) ∆
= P (Yx = y) (2)

1By a “path” we mean a consecutive edges in the graph regardless of direction. See Pearl (2009b, p. 335)
for a gentle introduction to d-separation and its proof. In linear models, the independencies implied by d-
separation are valid for non-recursive models as well.

2An alternative definition of do(x), invoking population averages only, is given in (Pearl, 2009b, p. 24).
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Figure 1: (a) Graphical model illustrating d-separation and the back-door criterion. U
terms are not shown explicitly. (b) Illustrating the intervention do(X = x).

Figure 2(b) illustrates the submodel Mx created by the atomic intervention do(x); it sets
the value ofX to x and thus removes the influence ofW1 and Z3 onX . We similarly define
the result of conditional interventions by

P (y|do(x), z) ∆
= P (y, z|do(x))/P (z|do(x) = P (Yx = y|Zx = z) (3)

P (y|do(x), z) captures the z-specific effect of X on Y , that is, the effect of setting X to x
among those units only for which Z = z.

A second important question concerns identification in partially specified models: Given
a set A of qualitative causal assumptions, as embodied in the structure of the causal graph,
can the controlled (post-intervention) distribution, P (y|do(x)), be estimated from the avail-
able data which is governed by the pre-intervention distribution P (z, x, y)? In linear para-
metric settings, the question of identification reduces to asking whether some model param-
eter, β, has a unique solution in terms of the parameters of P (say the population covariance
matrix). In the nonparametric formulation, the notion of “has a unique solution” does not
directly apply since quantities such as Q = P (y|do(x)) have no parametric signature and
are defined procedurally by a symbolic operation on the causal model M , as in Fig. 1(b).
The following definition captures the requirement that Q be estimable from the data:

Definition 2. (Identifiability) (Pearl, 2000a, p. 77)
A causal queryQ is identifiable from data compatible with a causal graphG, if for any two
(fully specified) models M1 and M2 that satisfy the assumptions in G, we have

P1(v) = P2(v)⇒ Q(M1) = Q(M2) (4)

In words, equality in the probabilities P1(v) and P2(v) induced by modelsM1 andM2,
respectively, entails equality in the answers that these two models give to query Q. When
this happens, Q depends on P only, and should therefore be expressible in terms of the
parameters of P .

When a queryQ is given in the form of a do-expression, for exampleQ = P (y|do(x), z),
its identifiability can be decided systematically using an algebraic procedure known as the
do-calculus (Pearl, 1995). It consists of three inference rules that permit us to equate inter-
ventional and observational distributions whenever certain d-separation conditions hold in
the causal diagram G.

3.1 The Rules of do-calculus

Let X , Y , Z, and W be arbitrary disjoint sets of nodes in a causal DAG G. We denote by
GX the graph obtained by deleting from G all arrows pointing to nodes in X . Likewise,
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we denote by GX the graph obtained by deleting from G all arrows emerging from nodes
in X . To represent the deletion of both incoming and outgoing arrows, we use the notation
GXZ .

The following three rules are valid for every interventional distribution compatible
with G.
Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if (Y⊥⊥Z|X,W )GX
(5)

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y⊥⊥Z|X,W )GXZ
(6)

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y⊥⊥Z|X,W )G
XZ(W )

, (7)

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX .
To establish identifiability of a causal query Q, one needs to repeatedly apply the

rules of do-calculus to Q, until an expression is obtained which no longer contains a do-
operator3; this renders it estimable from nonexperimental data. The do-calculus was proven
to be complete for queries in the form Q = P (y|do(x), z) (Huang and Valtorta, 2006; Sh-
pitser and Pearl, 2006), which means that ifQ cannot be reduced to probabilities of observ-
ables by repeated application of these three rules, such a reduction does not exist, i.e., the
query is not estimable from observational studies without strengthening the assumptions.

Covariate Selection: The back-door criterion

Consider an observational study where we wish to find the effect of treatment (X) on
outcome (Y ), and assume that the factors deemed relevant to the problem are structured as
in Fig. 1(a); some are affecting the outcome, some are affecting the treatment, and some are
affecting both treatment and response. Some of these factors may be unmeasurable, such as
genetic trait or lifestyle, while others are measurable, such as gender, age, and salary level.
Our problem is to select a subset of these factors for measurement and adjustment such
that if we compare treated vs. untreated subjects having the same values of the selected
factors, we get the correct treatment effect in that subpopulation of subjects. Such a set
of factors is called a “sufficient set,” “admissible set” or a set “appropriate for adjustment”
(see Greenland et al. 1999; Pearl 2000b, 2009a).

The following criterion, named “back-door” (Pearl, 1993) provides a graphical method
of selecting such a set of factors for adjustment.

Definition 3. (admissible sets—the back-door criterion)
A set S is admissible (or “sufficient”) for estimating the causal effect of X on Y if two
conditions hold:

1. No element of S is a descendant of X .

2. The elements of S “block” all “back-door” paths from X to Y—namely, all paths
that end with an arrow pointing to X .

Based on this criterion we see, for example that, in Fig. 1, the sets {Z1, Z2, Z3}, {Z1, Z3},
{W1, Z3}, and {W2, Z3} are each sufficient for adjustment, because each blocks all back-
door paths between X and Y . The set {Z3}, however, is not sufficient for adjustment
because it does not block the path X ←W1 ← Z1 → Z3 ← Z2 →W2 → Y .

3Such derivations are illustrated in graphical details in (Pearl, 2009b, p. 87).
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The intuition behind the back-door criterion is as follows. The back-door paths in the
diagram carry spurious associations fromX to Y , while the paths directed along the arrows
from X to Y carry causative associations. Blocking the former paths (by conditioning
on S) ensures that the measured association between X and Y is purely causal, namely,
it correctly represents the target quantity: the causal effect of X on Y . Conditions for
relaxing restriction 1 are given in (Pearl, 2009b, p. 338; Shpitser et al., 2010).

The implication of finding a sufficient set, S, is that stratifying on S is guaranteed to
remove all confounding bias relative to the causal effect of X on Y . In other words, it
renders the causal effect of X on Y identifiable, via the adjustment formula4

P (Y = y|do(X = x)) =
∑
s

P (Y = y|X = x, S = s)P (S = s) (8)

Since all factors on the right-hand side of the equation are estimable (e.g., by regression)
from pre-interventional data, the causal effect can likewise be estimated from such data
without bias. Moreover, the back-door criterion implies the independence X⊥⊥Yx|S, also
known as “conditional ignorability” (Rosenbaum and Rubin, 1983) and, provides therefore
the scientific basis for most inferences in the potential outcome framework.

The back-door criterion allows us to write Eq. (8) by inspection, after selecting a suffi-
cient set, S, from the diagram. The selection criterion can be applied systematically to dia-
grams of any size and shape, thus freeing analysts from judging whether “X is conditionally
ignorable given S,” a formidable mental task required in the potential-response framework.
The criterion also enables the analyst to search for an optimal set of covariates—namely, a
set, S, that minimizes measurement cost or sampling variability (Tian et al., 1998).

Summary Result 1. (Identification of Interventional Expressions) Given a causal
graph G containing both measured and unmeasured variables, the consistent estima-
bility of any expression of the form

Q = P (y1, y2, . . . , ym|do(x1, x2, . . . , xn), z1, z2, . . . , zk)

can be decided in polynomial time. If Q is estimable, then its estimand can be derived
in polynomial time. Furthermore, the algorithm is complete.

The results stated in Summary Result 1 were developed in several stages over the past 20
years (Pearl, 1993, 1995; Tian and Pearl, 2002; Shpitser and Pearl, 2006). Bareinboim
and Pearl (2012a) extended the identifiability of Q to combinations of observational and
experimental studies.

4. Mediation Analysis

The nonparametric structural model for a typical mediation problem takes the form:

t = fT (uT ) m = fM (t, uM ) y = fY (t,m, uY ) (9)

where T (treatment), M (mediator), and Y (outcome) are discrete or continuous random
variables, fT , fM , and fY are arbitrary functions, and UT , UM , UY represent respectively
omitted factors that influence T,M, and Y . The triplet U = (UT , UM , UY ) is a random
vector that accounts for all variations between individuals. It is sometimes called “unit,”
for it offers a complete characterization of a subject’s behavior as reflected in T,M, and Y .

4Summations should be replaced by integration when applied to continuous variables, as in (Imai et al.,
2010).
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Figure 2: (a) The basic nonparametric mediation model, with no confounding. (b) A
confounded mediation model in which dependence exists between UM and (UT , UY ).

The distribution of U , denoted P (U = u), uniquely determines the distribution P (t,m, y)
of the observed variables through the three functions in Eq. (9).

In Fig. 2(a) the omitted factors are assumed to be arbitrarily distributed but mutually
independent, written UT⊥⊥UM⊥⊥UY . In Fig. 2(b) the dashed arcs connecting UT and UM

(as well as UM and UT ) encode the understanding that the factors in question may be
dependent.

4.1 Natural direct and indirect effects

Using the structural model of Eq. (9), four types of effects can be defined for the transition
from T = 0 to T = 1:5

(a) Total Effect –
TE = E{fY [1, fM (1, uM ), uY ]− fY [0, fM (0, uM ), uY ]}

= E[Y1 − Y0]

= E[Y |do(T = 1)]− E[Y |do(T = 0)] (10)

TE measures the expected increase in Y as the treatment changes from T = 0 to T = 1,
while the mediator is allowed to track the change in T as dictated by the function fM .
(b) Controlled Direct Effect –

CDE(m) = E{fY [1,M = m,uY ]− fY [0,M = m,uY ]}
= E[Y1,m − Y0,m]

= E[Y |do(T = 1,M = m)]− E[Y |do(T = 0,M = m)] (11)

CDE measures the expected increase in Y as the treatment changes from T = 0 to T = 1,
while the mediator is set to a specified level M = m uniformly over the entire population.
(c) Natural Direct Effect –

NDE = E{fY [1, fM (0, uM ), uT ]− fY [0, fM (0, uM ), uT ]}
= E[Y1,M0 − Y0,M0 ] (12)

NDE measures the expected increase in Y as the treatment changes from T = 0 to T = 1,
while the mediator is set to whatever value it would have attained (for each individual)
prior to the change, i.e., under T = 0.
(d) Natural Indirect Effect –

NIE = E{fY [0, fM (1, uM ), uY ]− fY [0, fM (0, uM ), uY ]}
= E[Y0,M1 − Y0,M0 ] (13)

5Generalizations to arbitrary reference point, say from T = t to T = t′, are straightforward. These defi-
nitions apply at the population levels; the unit-level effects are given by the expressions under the expectation.
All expectations are taken over the factors UM and UY .
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NIE measures the expected increase in Y when the treatment is held constant, at
T = 0, and M changes to whatever value it would have attained (for each individual)
under T = 1. It captures, therefore, the portion of the effect which can be explained by
mediation alone, while disabling the capacity of Y responds to X .

We note that, in general, the total effect can be decomposed as

TE = NDE −NIEr (14)

where NIEr stands for the natural indirect effect under the reverse transition, from T = 1
to T = 0. This implies that NIE is identifiable whenever NDE and TE are identifi-
able. In linear systems, where reversal of transitions amounts to negating the signs of their
effects, we have the standard additive formula, TE = NDE +NIE.

We further note that TE and CDE(m) are do-expressions and can, therefore be esti-
mated from experimental data; not so NDE and NIE. Since Summary Result 1 assures
us that the identifiability of any do-expression can be determined by an effective algorithm,
we will regard the identifiability of TE and CDE(m) as solved problems, and will focus
our attention on NDE and NIE.

4.2 Sufficient conditions for identifying natural effects

The following is a set of assumptions or conditions, marked A-1 to A-4, that are sufficient
for identifying both direct and indirect natural effects. Each condition is communicated by
a verbal description followed by its formal expression. The full set of assumptions is then
followed by its graphical representation.

Assumption set A (Pearl, 2001)

There exists a set W of measured covariates such that:

A-1 No member of W is affected by treatment.

A-2 W deconfounds the mediator-outcome relationship (holding T constant) i.e.,

[Mt⊥⊥Yt′,m |W ]

A-3 TheW -specific effect of the treatment on the mediator is identifiable by some means.

[P (m | do(t), w) is identifiable]

A-4 The W -specific joint effect of {treatment+mediator} on the outcome is identifiable
by some means.

[P (y | do(t,m), w) is identifiable]

Graphical version of assumption set A

There exists a set W of measured covariates such that:

AG-1 No member of W is a descendant of T .

AG-2 W blocks all back-door paths from M to Y (not traversing X →M and X → Y ).

AG-3 The W -specific effect of T on M is identifiable (using Summary Result 1, and pos-
sibly using experiments or auxiliary variables).
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AG-4 The W -specific joint effect of {T,M} on Y is identifiable (using Summary Result
1, and possibly using experiments or auxiliary variables).

Summary Result 2. (Identification of natural effects)
When conditions A-1 and A-2 hold, the natural direct effect is experimentally identifi-
able and is given by

NDE =
∑
m

∑
w

[E(Y |do(T = 1,M = m)),W = w)− E(Y |do(T = 0,M = m),W = w)]

P (M = m|do(T = 0),W = w)P (W = w) (15)

The identifiability of the do-expressions in (15) is guaranteed by conditions A-3 and
A-4, and can be determined by Summary Result 1.

In the non-confounding case (Fig. 2(a)) NDE reduces to the mediation formula:

NDE =
∑
m

[E(Y | T = 1,M = m)−E(Y | T = 0,M = m)]P (M = m | T = 0).

(16)

Corollary 1. If conditions A-1 and A-2 are satisfied by a set W that also deconfounds the
relationships in A-3 and A-4, then the do-expressions in (15) are reducible to conditional
expectations, and the natural direct effect becomes:6

NDE =
∑
m

∑
w

[E(Y |T = 1,M = m,W = w)− E(Y |T = 0,M = m,W = w)]

P (M = m|T = 0,W = w)P (W = w) (17)

It is interesting to compare assumptionsA-1 toA-4 to those often cited in the literature,
which are based on “sequential ignorability” (Imai et al., 2010), the dominant inferential
tool in the potential outcome framework.

Assumption set B (Sequential ignorability)

There exists a set W of measured covariates such that:

B-1 W and T deconfound the mediator-outcome relationship.

[Yt′,m⊥⊥Mt | T,W ]

B-2 W deconfounds the treatment-{mediator, outcome} relationship.

[T⊥⊥(Yt′,m,Mt) |W ]

Assumption set A differs from assumption set B on two main provisions. First, A-3
and A-4 permit the identification of these causal effects by any means, while B-1 and B-
2 insist that identification be accomplished by adjustment for W only. Second, whereas
A-3 and A-4 auxiliary covariates to be invoked in the identification of the causal effects
needed, B requires that the same set W satisfy all conditions simultaneously. Due to these
two provisions, assumption set A significantly broadens the class of problems in which
the natural effects are identifiable (Pearl, 2013). Shpitser (2013) further provides complete
algorithms for identifying natural direct and indirect effects and extends these results to
path-specific effects with multiple treatments and multiple outcomes.

6Equation (17) is identical to the one derived by Imai et al. (2010) using sequential ignorability (i.e.,
assumptions B-1 and B-2) and subsequently re-derived by a number of other authors (Wang and Sobel, 2013).
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5. External Validity and Transportability

In applications requiring identification, the role of the do-calculus is to remove the do-
operator from the query expression. We now discuss a totally different application, to
decide if experimental findings from environment π can be transported to a new, poten-
tially different environment, π∗, where only passive observations can be performed. This
problem, labeled “transportability” in (Pearl and Bareinboim, 2011) is at the heart of ev-
ery scientific investigation since, invariably, experiments performed in one environment (or
population) are intended to be used elsewhere, where conditions may differ.

To formalize problems of this sort, a graphical representation called “selection dia-
grams” was devised (Fig. 3) which encodes knowledge about differences and commonal-
ities between populations. A selection diagram is a causal diagram annotated with new
variables, called S-nodes, which point to the mechanisms where discrepancies between
the two populations are suspected to take place. The task of deciding if transportability

S

(c)(b)(a)

Z

Z

X Y X Y

S

S

Z
X Y

Figure 3: Selection diagrams depicting differences in populations. In (a) the two popu-
lations differ in age distributions. In (b) the populations differs in how reading skills (Z)
depends on age (an unmeasured variable, represented by the hollow circle) and the age dis-
tributions are the same. In (c) the populations differ in how Z depends on X . Dashed arcs
(e.g., X L9999K Y ) represent the presence of latent variables affecting both X and Y .

is feasible now reduces to a syntactic problem of separating (using the do-calculus) the
do-operator from a the S-variables in the query expression P (y|do(x), z, s).

Theorem 1. (Pearl and Bareinboim, 2011) Let D be the selection diagram characterizing
two populations, π and π∗, and S a set of selection variables in D. The relation R =
P ∗(y|do(x), z) is transportable from π and π∗ if and only if the expression P (y|do(x), z, s)
is reducible, using the rules of do-calculus, to an expression in which S appears only as a
conditioning variable in do-free terms.

While Theorem 1 does not specify the sequence of rules leading to the needed reduction
(if such exists), a complete and effective graphical procedure was devised by Bareinboim
and Pearl (2012b), which also synthesizes a transport formula whenever possible. Each
transport formula determines what information need to be extracted from the experimental
and observational studies and how they ought to be combined to yield an unbiased estimate
of the relation R = P (y|do(x), s) in the target population π∗. For example, the transport
formulas induced by the three models in Fig. 3 are given by:

(a) P (y|do(x), s) =
∑

z P (y|do(x), z)P (z|s)

(b) P (y|do(x), s) = P (y|do(x))

(c) P (y|do(x), s) =
∑

z P (y|do(x), z)P (z|x, s)
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Each of these formulas satisfies Theorem 1, and each describes a different procedure of
pooling information from π and π∗.

For example, (c) states that to estimate the causal effect of X on Y in the target popula-
tion π∗, P (y|do(x), z, s), we must estimate the z-specific effect P (y|do(x), z) in the source
population π and average it over z, weighted by P (z|x, s), i.e., the conditional probability
P (z|x) estimated at the target population π∗. The derivation of this formula follows by
writing

P (y|do(x), s) =
∑
z

P (y|do(x), z, s)P (z|do(x), s)

and noting that Rule 1 of do-calculus authorizes the removal of s from the first term (since
Y⊥⊥S|Z holds inGX ) and Rule 2 authorizes the replacement of do(x) with x in the second
term (since the independence Z⊥⊥X holds in GX .)

A generalization of transportability theory to multi-environment has led to a principled
solution to estamability problems in “Meta Analysis.” “Meta Analysis” is a data fusion
problem aimed at combining results from many experimental and observational studies,
each conducted on a different population and under a different set of conditions, so as to
synthesize an aggregate measure of effect size that is “better,” in some sense, than any
one study in isolation. This fusion problem has received enormous attention in the health
and social sciences, and is typically handled by “averaging out” differences (e.g., using
inverse-variance weighting).

Using multiple “selection diagrams” to encode commonalities among studies, Barein-
boim and Pearl (2013) “synthesized” an estimator that is guaranteed to provide unbiased
estimate of the desired quantity based on information that each study share with the target
environment. Remarkably, a consistent estimator may be constructed from multiple sources
even in cases where it is not constructable from any one source in isolation.

Summary Result 3. (Meta transportability) (Bareinboim and Pearl, 2013)
• Nonparametric transportability of experimental findings from multiple environments

can be determined in polynomial time, provided suspected differences are encoded in
selection diagrams.

• When transportability is feasible, a transport formula can be derived in polynomial
time which specifies what information needs to be extracted from each environment to
synthesize a consistent estimate for the target environment.

• The algorithm is complete i.e., when it fails, transportability is infeasible.

6. Missing Data from Causal Inference Perspectives

Most practical methods of dealing with missing data are based on the theoretical work
of Rubin (1976) and Little and Rubin (2002) who formulated conditions under which the
damage of missingness would be minimized. However, the theoretical guarantees provided
by this theory are rather weak, and the taxonomy of missing data problems rather coarse.

Specifically, Rubin’s theory divides problems into three categories: Missing Com-
pletely At Random (MCAR), Missing At Random (MAR) and Missing Not At Random
(MNAR). Performance guarantees and some testability results are available for MCAR and
MAR, while the vast space of MNAR problems has remained relatively unexplored.

Viewing missingness from a causal perspective evokes the following questions:

Q1. What must the world be like for a given statistical procedure to produce satisfactory
results?
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Q2. Can we tell from the postulated world whether any method exists that produces con-
sistent estimates of the parameters of interest?

Q3. Can we tell from data whether the postulated world should be rejected?

To answer these questions the user must articulate features of the problem in some
formal language, and capture both the inter-relationships among the variables of interest
as well as the missingness process. In particular, the model should identify those variables
that are responsible for values missing in another.

The graph in Fig. 4(a) depicts a typical missingness process, where missingness in
Z is explained by X and Y , which are fully observed. Taking such a graph, G, as a
representation of reality, we define two properties relative to a partially observed dataset
D.

Definition 4. (Recoverability)
A probabilistic relationship Q is said to be recoverable in G if there exists a consistent
estimate Q̂ of Q for any dataset D generated by G. In other words, in the limit of large
samples, the estimator should produce an estimate of Q as if no data were missing.

Definition 5. (Testability)
A missingness model G is said to be testable if any of its implications is refutable by data
with the same sets of fully and partially observed variables.

Rz

Ry Rx

(Treatment)Z(Treatment)Z

*Z

Rz

(Discomfort)
X

(Outcome)
Y

(a)

(Discomfort)
X

(Outcome)
Y

(b)

Figure 4: (a) Graph describing a MAR missingness process. X and Y are fully observed
variables, Z is partially observed and Z∗ is a proxy for Z. Rz is a binary variable that acts
as a switch: Z∗ = Z when Rz = 0 and Z∗ = m when Rz = 1. (b) Graph representing a
MNAR process. (The proxies Z∗, X∗, and Y ∗ are not shown.)

Figure 5: Recoverability of the joint distribution in MCAR, MAR, and NMAR. Joint dis-
tributions are recoverable in areas marked (S) and (M ).

While some recoverability and testability results are known for MCAR and MAR, (Lit-
tle, 1988; Potthoff et al., 2006) the theory of structural models permits us to extend these
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results to the entire class of MNAR problems, namely, the class of problems in which at
least one missingness mechanism (Rz) is triggered by variables that are themselves victims
of missingness (e.g., X and Y in Fig. 4(b)). The results of this analysis is summarized in
Fig. 5 which partitions the class of MNAR problems into three major regions with respect
to recoverability of the joint distribution.

1. M (Markovian+) - Graphs with no latent variables and no variable X that is a parent
of its missingness mechanism Rx.

2. S (Sequential-MAR) - Graphs for which there exists an ordering X1, X2, . . . , Xn

of the variables such that for every i we have: Xi⊥⊥(RXi , RYi)|Yi where Yi ⊆
{Xi+1, .., Xn}. Such sequences yield the estimand: P (X) =

∏
i P (Xi|Yi, Rxi =

0, Ryi = 0), in which every term in this product is estimable from the data.

3. N (Non-recoverable) - Graphs which are recognizable as non-recoverable. Examples
are models in which X and Rx are connected by an edge or by an induced path
(Verma and Pearl, 1990).

The area labeled ‘O’ consists of all other problem structures, and we conjecture this
class to be empty. All problems in areas (M) and (S) are recoverable.

Note that the partition of the MNAR territory into recoverable vs. non recoverable
models is query-dependent. For example, some problems permit unbiased estimation of
queries such as P (Y |X) and P (Y ) but not of P (X,Y ). Note further that MCAR and MAR
are nested subsets of the “Sequential-MAR” class, all three permit the recoverability of the
joint distribution. A version of Sequential-MAR is discussed in Gill and Robins (1997) but
finding a recovering sequence in any given model is a task that requires graphical tools.

Graphical models also permit the partitioning of the MNAR territory into testable vs.
nontestable models. The former consists of at least one conditional independence claim
that can be tested under missingness. Here we note a peculiar property which may sound
paradoxical: some testable implications of fully recoverable distributions are not testable
under missingness.

Figure 4(a) demonstrates this peculiarity. Here P (X,Y, Z) is recoverable since the
graph is in (M) (it is also in MAR). P (X,Y, Z) further advertises the conditional inde-
pendence X⊥⊥Y |Z. Yet, X⊥⊥Y |Z is not testable by any data in which the frequency of
missingness (in Z) is above a certain threshold (Mohan and Pearl, 2013). Any such data
can be construed as if generated by the model in Fig. 4(a), where the independence holds.

Summary Result 4. (Recoverability from missing data) (Mohan et al., 2013)

• The feasibility of recovering relations from missing data can be determined in polyno-
mial time, provided the missingness process is encoded in a causal diagram that falls
in areas M,S, or N of Fig. 5.

7. Conclusion

The unification of the structural, counterfactual and graphical approaches has produced
mathematical tools that have helped resolve a variety of causal inference problems (e.g.,
Summary Results 1 and 2). These tools are currently being applied to new territories of
statistical inference and have led to Summary Results 3 and 4.
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