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ABSTRACT	
	
RCTs	are	valuable	tools	whose	use	is	spreading	in	economics	and	in	other	social	sciences.	
They	are	seen	as	desirable	aids	in	scientific	discovery	and	for	generating	evidence	for	poli-
cy.	Yet	some	of	the	enthusiasm	for	RCTs	appears	to	be	based	on	misunderstandings:	that	
randomization	provides	a	fair	test	by	equalizing	everything	but	the	treatment	and	so	allows	
a	precise	estimate	of	the	treatment	alone;	that	randomization	is	required	to	solve	selection	
problems;	that	lack	of	blinding	does	little	to	compromise	inference;	and	that	statistical	in-
ference	in	RCTs	is	straightforward,	because	it	requires	only	the	comparison	of	two	means.	
None	of	these	statements	is	true.	RCTs	do	indeed	require	minimal	assumptions	and	can	op-
erate	with	little	prior	knowledge,	an	advantage	when	persuading	distrustful	audiences,	but	
a	crucial	disadvantage	for	cumulative	scientific	progress,	where	randomization	adds	noise	
and	undermines	precision.	The	lack	of	connection	between	RCTs	and	other	scientific	
knowledge	makes	it	hard	to	use	them	outside	of	the	exact	context	in	which	they	are	con-
ducted.	Yet,	once	they	are	seen	as	part	of	a	cumulative	program,	they	can	play	a	role	in	
building	general	knowledge	and	useful	predictions,	provided	they	are	combined	with	other	
methods,	including	conceptual	and	theoretical	development,	to	discover	not	“what	works,”	
but	why	things	work.	Unless	we	are	prepared	to	make	assumptions,	and	to	stand	on	what	
we	know,	making	statements	that	will	be	incredible	to	some,	all	the	credibility	of	RCTs	is	for	
naught.		
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Introduction		
	
Randomized	trials	are	currently	much	used	in	economics	and	are	widely	considered	to	be	a	de-

sirable	method	of	empirical	analysis	and	discovery.	There	is	a	long	history	of	such	trials	in	the	

subject.	There	were	four	large	federally	sponsored	negative	income	tax	trials	in	the	1960s	and	

1970s.	In	the	mid-1970s,	there	was	a	famous,	and	still	frequently	cited,	trial	on	health	insurance,	

the	Rand	health	experiment.		There	was	then	a	period	during	which	randomized	controlled	trials	

(RCTs)	received	less	attention	by	academic	economics;	even	so,	randomized	trials	on	welfare,	

social	policy,	labor	markets,	and	education	have	continued	since	the	mid-1970s,	some	with	sub-

stantial	involvement	and	discussion	by	academic	economists,	see	Greenberg	and	Shroder	

(2004).		

Recent	randomized	trials	in	economic	development	have	attracted	attention,	and	the	

idea	that	such	trials	can	discover	“what	works”	has	been	widely	adopted	in	economics,	as	well	

as	in	political	science,	education,	and	social	policy.	Among	both	researchers	and	the	general	

public,	RCTs	are	perceived	to	yield	causal	inferences	and	parameter	estimates	that	are	more	

credible	than	other	empirical	methods	that	do	not	involve	the	comparison	of	randomly	selected	

treatment	and	control	groups.	RCTs	are	seen	as	largely	exempt	from	many	of	the	econometric	

problems	that	characterize	observational	studies.	When	RCTs	are	not	feasible,	researchers	often	

mimic	randomized	designs	by	using	observational	data	to	construct	two	groups	that,	as	far	as	

possible,	are	identical	and	differ	only	in	their	exposure	to	treatment.		

The	preference	for	randomized	trials	has	spread	beyond	trialists	to	the	general	public	

and	the	media,	which	typically	reports	favorably	on	them.	They	are	seen	as	accurate,	objective,	

and	largely	independent	of	“expert”	knowledge	that	is	often	regarded	as	manipulable,	politically	

biased,	or	otherwise	suspect.	There	are	now	“What	Works”	centers	using	and	recommending	

RCTs	in	a	huge	range	of	areas	of	social	concern	across	Europe	and	the	Anglophone	world,	such	

as	the	US	Department	of	Education’s	What	Works	Clearing	House,	The	Campbell	Collaboration	

(parallel	to	the	Cochrane	Collaboration	in	health),	the	Scottish	Intercollegiate	Guidelines	Net-

work	(SIGN),	the	US	Department	of	Health	and	Human	Services	Child	Welfare	Information	

Gateway,	the	US	Social	and	Behavioral	Sciences	Team,	and	others.	The	British	government	has	

established	eight	new	(well-financed)	What	Works	Centers	similar	to	the	National	Institute	for	

Health	and	Care	Excellence	(NICE),	with	more	planned.	They	extend	NICE’s	evaluation	of	health	

treatment	into	aging,	early	intervention,	education,	crime,	local	economic	growth,	Scottish	ser-

vice	delivery,	poverty,	and	wellbeing.	These	centers	see	randomized	controlled	trials	as	their	
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preferred	tool.	There	is	a	widespread	desire	for	careful	evaluation—to	support	what	is	some-

times	called	the	“audit	society”—and	everyone	assents	to	the	idea	that	policy	should	be	based	

on	evidence	of	effectiveness,	for	which	randomized	trials	appear	to	be	ideally	suited.	Trials	are	

easily,	if	not	very	precisely,	explained	along	the	lines	that	random	selection	generates	two	oth-

erwise	identical	groups,	one	treated	and	one	not;	results	are	easy	to	compute—all	we	need	is	

the	comparison	of	two	averages;	and	unlike	other	methods,	it	seems	to	require	no	specialized	

understanding	of	the	subject	matter.	It	seems	a	truly	general	tool	that	(nominally)	works	in	the	

same	way	in	agriculture,	medicine,	sociology,	economics,	politics,	and	education.		It	is	supposed	

to	require	no	prior	knowledge,	whether	suspect	or	not,	which	is	seen	as	a	great	advantage.		

In	this	paper,	we	present	two	sets	of	arguments,	one	on	conducting	RCTS	and	on	how	to	

interpret	the	results,	and	one	on	how	to	use	the	results	once	we	have	them.	Although	we	do	not	

care	for	the	terms—for	reasons	that	will	become	apparent—the	two	sections	correspond	rough-

ly	to	internal	and	external	validity.	

Randomized	controlled	trials	are	often	useful,	and	have	been	important	sources	of	em-

pirical	evidence	for	causal	claims	and	evaluation	of	effectiveness	in	many	fields.	Yet	many	of	the	

popular	interpretations—not	only	among	the	general	public,	but	also	among	trialists—are	in-

complete	and	sometimes	misleading,	and	these	misunderstandings	can	lead	to	unwarranted	

trust	in	the	impregnability	of	results	from	RCTs,	to	a	lack	of	understanding	of	their	limitations,	

and	to	mistaken	claims	about	how	widely	their	results	can	be	used.	All	these,	in	turn,	can	lead	to	

flawed	policy	recommendations.		

Among	the	misunderstandings	are	the	following:	(a)	randomization	ensures	a	fair	trial	

by	ensuring	that,	at	least	with	high	probability,	treatment	and	control	groups	differ	only	in	the	

treatment;	(b)	RCTs	provide	not	only	unbiased	estimates	of	average	treatment	effects,	but	also	

precise	estimates;	(c)	randomization	is	necessary	to	solve	the	selection	problem;	(d)	lack	of	

blinding,	which	is	common	in	social	science	experiments,	does	not	seriously	compromise	infer-

ence;	(e)	statistical	inference	in	RCTs,	which	requires	only	the	simple	comparison	of	means,	is	

straightforward,	so	that	standard	significance	tests	are	reliable.		

While	many	of	the	problems	of	RCTs	are	shared	with	observational	studies,	some	are	

unique,	for	example	the	fact	that	randomizing	itself	can	change	outcomes	independently	of	

treatment.	More	generally,	it	is	almost	never	the	case	that	an	RCT	can	be	judged	superior	to	a	

well-conducted	observational	study	simply	by	virtue	of	being	an	RCT.	The	idea	that	all	methods	
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have	their	flaws,	but	RCTs	always	have	fewest,	is	one	of	the	deepest	and	mort	pernicious	mis-

understandings.	

In	the	second	part	of	the	paper,	we	discuss	the	uses	and	limitations	of	results	from	RCTs	

for	making	policy.	The	non-parametric	and	theory-free	nature	of	RCTs,	which	is	arguably	an	ad-

vantage	in	estimation,	is	a	serious	disadvantage	when	we	try	to	use	the	results	outside	of	the	

context	in	which	they	were	obtained.	Much	of	the	literature,	in	economic	development	and	

elsewhere,	perhaps	inspired	by	Campbell	and	Stanley’s	(1963)	famous	“primacy	of	internal	valid-

ity,”	assumes	that	internal	validity	is	enough	to	guarantee	the	usefulness	of	the	estimates	in	dif-

ferent	contexts.	Without	understanding	RCTs	within	the	context	of	the	knowledge	that	we	al-

ready	possess	about	the	world,	much	of	it	obtained	by	other	methods,	we	do	not	know	how	to	

use	trial	results.	But	once	the	commitment	has	been	made	to	seeing	RCTs	within	this	broader	

structure	of	knowledge	and	inference,	and	when	they	are	designed	to	fit	within	it,	they	can	play	

a	useful	role	in	building	general	knowledge	and	policy	predictions;	for	example,	an	RCT	can	be	a	

good	way	of	estimating	a	key	policy	magnitude.	The	broader	context	within	which	RCTs	need	to	

be	set	includes	not	only	models	of	economic	structure,	but	also	the	previous	experience	that	

policymakers	have	accumulated	about	local	settings	and	implementation.	Most	importantly	for	

economic	development,	the	use	of	RCT	results	should	be	sensitive	to	what	people	want,	both	

individually	and	collectively.	RCTs	should	not	become	yet	another	technical	fix	that	is	imposed	

on	people	by	bureaucrats	or	foreigners;	RCT	results	need	to	be	incorporated	into	a	democratic	

process	of	public	reasoning,	Sen	(2011).	Greenberg,	Shroder,	and	Onstott	(1999)	document	that,	

even	before	the	recent	wave	of	RCTs	in	development,	most	RCTs	in	economics	have	been	car-

ried	out	by	rich	people	on	poor	people,	and	the	fact	should	make	us	especially	sensitive	to	avoid	

charges	of	paternalism.	

Section	1:	Interpreting	the	results	of	RCTs	

1.1	Prolog	

RCTs	were	first	popularized	by	Fisher’s	agricultural	trials	in	the	1930s	and	are	today	often	de-

scribed	by	the	Rubin	counterfactual	causal	model,	which	itself	traces	back	to	Neyman	in	1923,	

see	Freedman	(2006)	for	a	description	of	the	history:	Each	unit	i	(a	person,	a	pupil,	a	school,	an	

agricultural	plot)	is	assumed	to	have	two	possible	outcomes,	 	and	 ,	the	former	occurring	

if	there	is	no	treatment	at	the	time	in	question,	the	latter	if	the	unit	is	treated.	The	difference	

between	the	two	outcomes	 	is	the	individual	treatment	effect,	which	we	shall	denote

	Treatment	effects	are	typically	different	for	different	units.	No	unit	can	be	both	treated	and	

Yio Yi1

Yi1 −Yi0
βi .
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untreated	at	the	same	time,	so	only	one	or	other	of	the	outcomes	occurs;	the	other	is	counter-

factual	so	that	individual	treatment	effects	are	in	principle	unobservable.		

We	note	parenthetically	that	while	we	use	the	counterfactual	framework	here,	we	do	

not	endorse	it,	nor	argue	against	other	approaches	that	do	not	use	it,	such	as	the	Cowles	com-

mission	econometric	framework	where	the	causal	relations	are	coded	as	structural	equations,	

see	also	Pearl	(2009.)	Imbens	and	Wooldridge	(2009,	Introduction)	provide	an	eloquent	defense	

of	the	Rubin	formulation,	emphasizing	the	credibility	that	comes	from	a	theory-free	specifica-

tion	with	unlimited	heterogeneity	in	treatment	effects.	Heckman	and	Vytlacil	(2007,	Introduc-

tion)	make	an	equally	eloquent	case	against,	noting	that	the	treatments	in	RCTs	are	often	un-

clearly	specified	and	that	the	treatment	effects	are	hard	to	link	to	invariant	parameters	that	

would	be	useful	elsewhere.		

The	basic	theorem	governing	RCTs	is	a	remarkable	one.	It	states	that	the	average	treat-

ment	effect	is	the	average	outcome	in	the	treatment	group	minus	the	average	outcome	in	the	

control	group.	While	we	cannot	observe	the	individual	treatment	effects,	we	can	observe	their	

mean.	The	estimate	of	the	average	treatment	effect	(ATE)	is	simply	the	difference	between	the	

means	in	the	two	groups,	and	it	has	a	standard	error	that	can	be	estimated	and	used	to	make	

significance	statements	according	to	the	statistical	theory	that	applies	to	the	difference	of	two	

means,	on	which	more	below	in	Section	1.3.	The	difference	in	means	is	an	unbiased	estimator	of	

the	mean	treatment	effect.		

The	theorem	is	remarkable	because	it	requires	so	few	assumptions;	no	model	is	re-

quired,	no	assumptions	about	covariates	are	needed,	the	treatment	effects	can	be	heterogene-

ous,	and	nothing	is	assumed	about	the	shapes	of	statistical	distributions	other	than	the	statisti-

cal	question	of	the	existence	of	the	mean	of	the	counterfactual	outcome	values.	In	terms	of	one	

of	our	running	themes,	it	requires	no	expert	knowledge,	or	no	acceptance	of	priors,	expert	or	

otherwise.	The	theorem	also	has	its	limitations;	the	proof	uses	the	fact	that	the	difference	in	

two	means	is	the	mean	of	the	individual	differences,	i.e.	the	treatment	effects.	This	is	not	true	

for	the	median	(the	difference	in	two	medians	is	not	the	median	of	the	differences	which	is	the	

median	treatment	effect).	It	also	does	not	allow	us	to	estimate	any	percentile	of	the	distribution	

of	treatment	effects,	or	its	variance.	(Quantile	estimates	of	treatment	effects	are	not	the	quan-

tiles	of	the	distribution	of	treatment	effects,	but	the	differences	in	the	quantiles	of	the	two	mar-

ginal	distributions	of	treatments	and	controls;	the	two	measures	coincide	if	the	experiment	has	

no	effect	on	ranks,	an	assumption	that	would	be	convenient	but	is	hard	to	justify,	at	least	in	



	 6	

general.)	All	of	these	statistics	can	be	of	interest	for	policy	but	RCTs	are	not	informative	about	

them,	or	at	least	not	without	further	assumptions,	for	example	on	the	distribution	of	treatment	

effects,	see	Heckman,	Smith,	and	Clements	(1997),	and	much	of	the	attraction	of	RCTs	is	the	

absence	of	such	assumptions.			

The	basic	theorem	tells	us	that	the	difference	in	means	is	an	unbiased	estimator	of	the	

average	treatment	effect	but	says	nothing	about	the	variance	of	this	estimator.	In	general,	a	bi-

ased	estimator	that	is	typically	closer	to	the	truth	will	often	be	better	than	an	unbiased	estima-

tor	that	is	typically	wide	of	the	truth.	There	is	nothing	to	say	that	a	non-RCT	estimator,	in	spite	

of	bias,	might	not	have	a	lower	mean	squared	error	(MSE),	one	measure	of	the	distance	of	the	

estimate	from	the	truth,	or	a	lower	value	of	a	“loss	function”	that	defines	the	loss	to	the	exper-

imenter	of	missing	the	target.	

	It	is	useful	to	think	of	the	mean	average	treatment	effect	from	an	RCT	in	terms	of	sam-

pling	from	a	finite	population,	as	when	the	Bureau	of	the	Census	estimates	average	income	of	

the	US	population	in	2013.	For	the	RCT,	the	population	is	the	population	of	units	whose	average	

treatment	effect	is	of	interest;	note	the	importance	of	defining	the	population	of	interest	be-

cause,	given	the	heterogeneity	of	treatment	effects,	the	average	treatment	effect	will	vary	

across	different	populations,	just	as	average	incomes	differ	across	different	subpopulations	of	

the	US.	Finite	population	sampling	theory	tells	us	how	to	get	accurate	estimates	of	means	from	

samples;	in	the	RCT	case,	the	sample	is	the	study	sample,	both	treatments	and	controls.	In	prin-

ciple,	the	study	sample	could	be	a	random	sample	of	the	parent	population	of	interest,	in	which	

case	it	is	representative	of	it,	but	that	is	seldom	the	case.	Because	the	estimate	is	population	

specific,	it	is	not	(or	need	not	be)	thought	of	as	the	parameter	of	a	super-population,	or	other-

wise	generalizable	in	any	way.	Average	income	in	the	US	in	2013	may	be	of	interest	in	its	own	

right;	but	it	will	not	be	the	same	as	average	income	in	2014,	nor	will	it	be	the	same	as	average	

income	of	whites,	or	of	the	populations	of	Wyoming	or	New	York.		Exactly	the	same	is	true	of	

the	estimate	of	an	average	treatment	effect;	it	applies	to	the	study	sample	in	which	the	trial	was	

done,	at	the	time	when	it	was	done,	and	its	use	outside	of	those	confines,	though	often	possi-

ble,	requires	argument	and	justification.	Without	such	an	argument,	we	cannot	claim	that	an	

ATE	is	“the”	mean	treatment	effect	any	more	than	that	average	income	in	the	US	in	2013	is	

“the”	average	income	of	the	US	in	any	other	year.	Of	course,	knowing	average	income	in	2013	

can	be	useful	for	making	other	calculations,	such	as	an	estimate	of	income	in	2014,	or	of	a	sub-
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population	that	we	know	is	richer	or	poorer;	the	fact	that	an	estimate	does	not	universally	gen-

eralize	does	not	make	it	useless.	We	shall	return	to	these	issues	in	Section	2.		

1.2.	Precision,	balance,	and	randomization	

1.2.1	Precision	and	bias	

We	should	like	our	estimate	of	the	average	treatment	effect	to	be	as	close	to	the	truth	as	possi-

ble.	One	way	to	assess	closeness	is	the	mean	square	error	(MSE),	defined	as		

	 			 (1)	

where	 	is	the	true	average	treatment	effect,	and	 	is	its	estimate	from	a	particular	trial.	The	

expectation	is	taken	over	repeated	randomizations	of	treatments	and	controls	using	the	same	

study	population.	It	is	also	standard	to	rewrite	(1)	as	

	 		 (2)	

so	that	mean	square	error	is	the	sum	of	the	variance	of	the	estimator—which	we	typically	know	

something	about	from	the	estimated	standard	error—and	the	square	of	the	bias—which	in	the	

case	of	a(n	ideal)	randomized	controlled	trial	is	zero.	The	elementary,	but	crucial	point	is	that,	

while	it	is	certainly	good	that	the	bias	is	zero,	that	fact	does	nothing	to	make	the	distance	from	

the	truth	as	small	as	it	might	be,	which	is	what	we	really	care	about.	An	unbiased	estimator	that	

is	nearly	always	wide	of	the	target	is	not	as	useful	as	one	that	is	always	near	to	it,	even	if,	on	

average,	it	is	off	center.	More	generally,	it	will	often	be	desirable	to	trade	in	some	unbiasedness	

for	greater	precision.	Experiments	are	often	expensive,	so	we	cannot	always	rely	on	large	sam-

ples	to	bring	the	estimate	close	to	the	truth	and	resolve	these	issues	for	us.	Much	of	this	Section	

is	concerned	with	how	to	design	experiments	to	maximize	precision.	

Unbiasedness	alone	cannot	therefore	justify	the	often-expressed	preference	for	RCTs	

over	other	estimators.	The	minimalist	assumptions	required	for	an	RCT	to	be	unbiased	are	an	

attraction	although,	as	we	shall	see	in	this	Section,	this	advantage	usually	comes	at	the	cost	of	

lowered	precision	and	of	difficulties	in	knowing	how	to	use	the	result,	as	we	shall	see	in	Section	

2.	Yet	there	is	an	often	expressed	belief	that	RCTs	are	somehow	guaranteed	to	be	precise,	simp-

ly	because	they	are	RCTs.	Occasionally	bias	and	precision	are	explicitly	confused;	the	JPAL	web-

site,	in	its	explanation	of	why	it	is	good	to	randomize,	says	that	RCTs	“are	generally	considered	

the	most	rigorous	and,	all	else	equal,	produce	the	most	accurate	(i.e.	unbiased)	results.”	Shad-

ish,	Cook,	and	Campbell	(2002,	p.	276),	in	what	is	(rightly)	considered	one	of	the	bibles	of	causal	

inference	in	social	science,	state	without	qualification	that	“randomized	experiments	provide	a	

 MSE = E(
⌢
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precise	answer	about	whether	a	treatment	worked”	(p.	276)	and	“The	randomized	experiment	is	

often	the	preferred	method	for	obtaining	a	precise	and	statistically	unbiased	estimate	of	the	

effects	of	an	intervention,”	(p.	277)	our	italics.		

Contrast	this	with	Cronbach	et	al	(1980)	who	quotes	Kendall’s	(1957)	pastiche	of	Long-

fellow,	“Hiawatha	designs	an	experiment,”	where	Hiawatha’s	insistence	on	unbiasedness	leads	

to	his	never	hitting	the	target	and	to	his	eventual	banishment.		

1.2.2	Balance	and	precision	in	a	linear	all-cause	model	

A	useful	way	to	think	about	precision	and	what	an	RCT	does	and	does	not	do	is	to	use	a	sche-

matic	linear	causal	model	of	the	form:		

	 		 (3)	

where,	as	before,	 	is	the	outcome	for	unit	i,		 	is	a	dichotomous	(1,0)	treatment	dummy	in-

dicating	whether	or	not	i	is	treated,	and	 	is	the	individual	treatment	effect	of	the	treatment	

on	i.		The	x’s	are	the	observed	or	unobserved	other	causes	of	the	outcome,	and	we	suppose	that	

(3)	captures	all	the	causes	of	  Yi . 	J	may	be	very	large.	Because	the	heterogeneity	of	the	individu-

al	treatment	effects	 βi 	is	unrestricted,	we	allow	the	possibility	that	the	treatment	interacts	with	

the	x’s	or	other	variables,	so	that	the	effects	of	T	can	depend	on	any	other	variables,	and	we	

shall	have	occasion	to	make	this	explicit	below.	An	obvious	and	important	example	is	when	the	

treatment	if	effective	only	in	the	presence	of	a	particular	value	of	one	of	the	x’s.		

We	do	not	need	i	subscripts	on	the  γ 's 	that	control	the	effects	of	the	other	causes;	if	

their	effects	differ	across	individuals,	we	include	the	interactions	of	individual	characteristics	

with	the	original	x’s	as	new	x’s.	Given	that	the	x’s	can	be	unobservable,	this	is	not	restrictive.	

Because	the	  β 's 	can	depend	on	the	x’s,	the	effects	of	the	x’s	on	the	outcome	can	depend	on	

  Ti , 	or,	equivalently,	the	effects	of	treatment	can	depend	on	covariates.	

In	an	experiment,	with	or	without	randomization,	we	can	represent	the	treatment	group	

as	having	 	and	the	control	group	as	having	 	So	when	we	subtract	the	average	out-

comes	among	the	controls	from	the	average	outcomes	among	the	treatments,	we	will	get	
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0
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1
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The	first	term	on	the	far	right	hand	side,	which	is	the	average	treatment	effect,	is	what	we	want,	

but	the	second	term	or	error	term,	which	is	the	sum	of	the	net	average	balances	of	other	causes	

Yi = βiTi + γ j xijj=1

J∑
Yi Ti
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Ti = 1, Ti = 0.
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across	the	two	groups,	will	generally	be	non-zero—because	of	selection	or	many	other	rea-

sons—and	needs	to	be	dealt	with	somehow.	We	get	what	we	want	when	the	means	of	all	the	

other	causes	are	identical	in	the	two	groups,	or	more	precisely	when	the	sum	of	their	net	differ-

ences	  S
1
− S

0
	is	zero;	this	is	the	case	of	perfect	balance.	With	perfect	balance,	the	difference	

between	the	two	means	is	exactly	equal	to	the	average	of	the	treatment	effect	among	the	

treated,	so	that	we	have	the	ultimate	precision	and	we	know	the	answer	exactly,	at	least	in	this	

linear	case.	

1.2.3	Balancing	acts:	real	and	magical	

How	do	we	get	balance,	or	something	close	to	it?	What,	exactly,	is	the	role	of	randomization?	In	

a	laboratory	experiment,	where	there	is	good	background	knowledge	of	the	other	causes,	the	

experimenter	has	a	good	chance	of	controlling	all	of	the	other	causes,	aiming	to	ensure	that	the	

last	term	in	(4)	is	close	to	zero.	Failing	such	knowledge	and	control,	an	alternative	is	matching,	

frequently	used	in	statistical,	medical,	and	econometric	work.	For	each	treatment,	a	match	is	

found	that	is	as	close	as	possible	on	all	suspected	causes,	so	that,	once	again,	the	last	term	in	(4)	

can	be	kept	small.	Again,	when	we	have	a	good	idea	of	the	causes,	matching	may	also	deliver	a	

precise	estimate.	Of	course,	when	there	are	important	unknown	or	unobservable	causes,	nei-

ther	laboratory	control	nor	matching	offers	protection.	

	 What	does	randomization	do?	Because	the	treatments	and	controls	come	from	the	

same	underlying	distribution,	randomization	guarantees,	by	construction,	that	the	last	term	on	

the	right	in	(4)	is	zero	in	expectation	at	baseline	(much	can	happen	to	disturb	this	beyond	base-

line).	This	is	true	whether	or	not	the	causes	are	observed.	If	the	RCT	is	repeated	many	times	on	

the	same	trial	population,	then	the	last	term	will	be	zero	when	averaged	over	an	infinite	number	

of	(entirely	hypothetical)	trials.	Of	course,	this	does	nothing	to	make	it	zero	in	any	one	trial	

where	the	difference	in	means	will	be	equal	to	the	average	treatment	effect	among	those	treat-

ed	plus	a	term	that	reflects	the	imbalance	in	the	net	effects	of	the	other	causes.	We	do	not	

know	the	size	of	this	error	term,	and	there	is	nothing	in	the	randomization	that	limits	its	size;	by	

chance,	there	can	be	one	(or	more)	important	excluded	cause(s)	that	is	very	unequally	distribut-

ed	between	treatment	and	controls.	This	imbalance	will	vary	over	replications	of	the	trial,	and	

its	average	size	will	ideally	be	captured	by	the	standard	error	of	the	estimated	ATE,	which	gives	

us	some	idea	of	how	likely	we	are	to	be	away	from	the	truth.	Getting	the	standard	error	and	

associated	significance	statements	right	are	therefore	of	great	importance.		
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	 Exactly	what	randomization	does	is	frequently	lost	in	the	practical	literature,	and	there	

is	often	a	confusion	between	perfect	control,	on	the	one	hand—as	in	a	laboratory	experiment	or	

perfect	matching	with	no	unobservable	causes—and	control	in	expectation—which	is	what	RCTs	

do.	We	suspect	that	at	least	some	of	the	popular	and	professional	enthusiasm	for	RCTs,	as	well	

as	the	belief	that	they	are	precise	by	construction,	comes	from	misunderstandings	about	bal-

ance.	These	misunderstandings	are	not	so	much	among	the	trialists	who,	when	pressed,	will	give	

a	correct	account,	but	come	from	imprecise	statements	by	trialists	that	are	taken	as	gospel	by	

the	lay	audience	that	the	trialists	are	keen	to	reach.		

Such	a	misunderstanding	is	well	captured	by	the	following	quote	from	the	World	Bank’s	

online	manual	on	impact	evaluation:	

“We	can	be	very	confident	that	our	estimated	average	impact,	given	as	the	difference	

between	the	outcome	under	treatment	(the	mean	outcome	of	the	randomly	assigned	

treatment	group)	and	our	estimate	of	the	counterfactual	(the	mean	outcome	of	the	

randomly	assigned	comparison	group)	constitute	the	true	impact	of	the	program,	since	

by	construction	we	have	eliminated	all	observed	and	unobserved	factors	that	might	oth-

erwise	plausibly	explain	the	difference	in	outcomes.”	Gertler	et	al	(2011)	(our	italics.)	

This	statement	confuses	actual	balance	in	any	single	trial	with	balance	in	expectation	over	many	

entirely	hypothetical	trials.	If	the	statement	above	were	true,	and	if	all	factors	were	indeed	con-

trolled	(and	no	imbalances	were	introduced	post	randomization),	the	difference	would	be	an	

exact	measure	of	the	average	treatment	effect,	at	least	in	the	absence	of	measurement	error.	

We	should	not	only	be	confident	of	our	estimate;	we	would	know	the	truth,	as	the	quote	says.		

	 A	similar	quote	comes	from	John	List,	one	of	the	most	imaginative	and	successful	schol-

ars	who	use	RCTs:	

“complications	that	are	difficult	to	understand	and	control	represent	key	reasons	to	

conduct	experiments,	not	a	point	of	skepticism.	This	is	because	randomization	acts	as	an	

instrumental	variable,	balancing	unobservables	across	control	and	treatment	groups.”	

Al-Ubaydli	and	List	(2013)	(italics	in	the	original.)	

And	from	Dean	Karlan,	founder	and	President	of	Yale’s	Innovations	for	Poverty	Action,	which	

runs	development	RCTs	around	the	world:	

		 “As	in	medical	trials,	we	isolate	the	impact	of	an	intervention	by	randomly	assigning	sub-

jects	to	treatments	and	control	groups.	This	makes	it	so	that	all	those	other	factors	

which	could	influence	the	outcome	are	present	in	treatment	and	control,	and	thus	any	
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difference	in	outcome	can	be	confidently	attributed	to	the	intervention.”	Karlan,	Gold-

berg	and	Copestake	(2009)	

And	from	the	medical	literature,	from	a	distinguished	psychiatrist	who	is	deeply	skeptical	of	

RCTs,	

“The	beauty	of	a	randomized	trial	is	that	the	researcher	does	not	need	to	understand	all	

the	factors	that	influence	outcomes.	Say	that	an	undiscovered	genetic	variation	makes	

certain	people	unresponsive	to	medication.	The	randomizing	process	will	ensure—or	

make	it	highly	probable—that	the	arms	of	the	trial	contain	equal	numbers	of	subjects	

with	that	variation.	The	result	will	be	a	fair	test.”	(Kramer,	2016,	p.	18)	

Claims	are	even	made	that	RCTs	reveal	knowledge	without	possibility	of	error.	Judy	Gueron,	the	

long-time	president	of	MDRC,	which	has	been	running	RCTs	on	US	government	policy	for	45	

years,	asks	why	federal	and	state	officials	were	prepared	to	support	randomization	in	spite	of	

frequent	difficulties	and	in	spite	of	the	availability	of	other	methods,	and	concludes	that	it	was	

because	“they	wanted	to	learn	the	truth,”	Gueron	and	Rolston	(2013,	429).	There	are	many	

statements	of	the	form	“We	know	that	[project	X]	worked	because	it	was	evaluated	with	a	ran-

domized	trial,”	Dynarski	(2015).		

	 Many	writers	are	more	cautious,	and	modify	statements	about	treatment	and	control	

groups	being	identical	with	terms	such	as	“statistically	identical,”	“reasonably	similar”	or	do	not	

differ	“systematically.”	And	we	have	no	doubt	that	all	of	the	authors	quoted	above	understand	

the	need	for	these	qualifications.	But	to	the	uninformed	reader,	the	qualified	statements	are	

unlikely	to	be	differentiated	from	the	unqualified	statements	quoted	above.	Nor	is	it	always	

clear	what	some	of	these	terms	mean.	For	example,	if	two	people	are	selected	at	random	from	a	

population,	and	it	so	happens	that	one	is	female	and	one	male,	in	what	sense	they	are	statisti-

cally	identical?	While	it	is	true	that	they	were	randomly	selected	from	the	same	parent	distribu-

tion,	which	provides	the	basis	for	inference,	the	calculation	of	standard	errors,	and	significance	

statements,	it	does	nothing	to	help	with	balance	or	precision	in	any	given	trial.		

1.2.4	Sample	size	and	statistical	inference	in	unbalanced	trials	

Is	a	single	trial	more	likely	to	be	balanced,	and	thus	more	precise,	when	the	sample	size	is	large?	

Indeed,	as	the	sample	size	tends	to	infinity,	the	means	of	the	x’s	in	the	treatment	and	control	

groups	will	become	arbitrarily	close.	Yet	this	is	of	little	help	in	finite	samples	as	Fisher	(1926)	

noted:	“Most	experimenters	on	carrying	out	a	random	assignment	will	be	shocked	to	find	how	

far	from	equally	the	plots	distribute	themselves,”	quoted	in	Morgan	and	Rubin	(2012).	Even	with	
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very	large	sample	sizes,	if	there	are	a	large	number	of	causes,	balance	on	each	cause	may	be	

infeasible.	Vandenbroucke	(2004)	notes	that	there	are	three	million	base	pairs	in	the	human	

genome,	many	or	all	of	which	could	be	relevant	prognostic	factors	for	the	biological	outcome	

that	we	are	seeking	to	influence.		

However,	as	(4)	makes	clear,	we	do	not	need	balance	on	all	causes,	only	on	their	net	ef-

fect,	the	term	  S 1 − S 0 	which	does	not	require	balance	on	each	cause	individually.	Yet	there	is	

no	guarantee	that	even	the	net	effect	will	be	small.	For	example,	there	may	only	be	one	omitted	

unobserved	cause	whose	effect	is	large,	one	single	base	pair	say,	so	that	if	that	one	cause	is	un-

balanced	across	treatments	and	controls,	that	there	is	individual	or	even	net	balance	on	other	

less	important	causes	is	not	going	to	help.		

Statements	about	large	samples	guaranteeing	balance	are	not	useful	without	guidelines	

about	how	large	is	large	enough,	and	such	statements	cannot	be	made	without	knowledge	of	

other	causes	and	how	they	affect	outcomes.	

	 A	simple	case	illustrates.	Suppose	that	there	is	one	hidden	cause	in	(3),	a	binary	variable	

x	that	is	unity	with	probability	p	and	0	otherwise.	With	n	controls	and	n	treatments,	the	differ-

ence	in	fractions	with	x=1	in	the	two	groups	has	mean	0	and	variance	  1/ np(1− p). 	With	n=100	

and	p=0.5,	the	standard	error	around	0	is	0.2	so	that,	if	this	unobserved	confounder	has	a	large	

effect	on	the	outcome,	the	imbalance	could	easily	mask	the	effect	of	treatment,	or	be	mistaken	

as	evidence	for	the	effectiveness	of	a	truly	ineffective	treatment.	

Lack	of	balance	in	the	above	example	or	in	the	net	effect	of	either	observables	or	non-

observables	in	(4)	does	not	compromise	the	inference	in	an	RCT	in	the	sense	of	obtaining	a	

standard	error	for	the	unbiased	ATE,	see	Senn	(2013)	for	a	particularly	clear	statement.		The	

randomization	does	not	guarantee	balance	but	it	provides	the	basis	for	making	probability	

statements	about	the	various	possible	outcomes,	which	is	also	clear	in	the	example	in	the	previ-

ous	paragraph.	This	was	also	Fisher’s	argument	for	randomization.	Senn	writes	“the	probability	

calculation	applied	to	a	clinical	trial	automatically	makes	an	allowance	for	the	fact	that	the	

groups	will	almost	certainly	be	unbalanced.”	(italics	in	the	original.)	If	the	design	is	such	that,	

even	with	perfect	randomization,	successive	replications	tend	to	generate	large	imbalances,	the	

resulting	imprecision	of	the	ATE	will	show	up	in	its	standard	error.	Of	course,	the	usefulness	of	

this	requires	that	the	calculated	standard	errors	permit	correct	significance	statements,	which,	

as	we	shall	see	in	the	next	subsection,	is	often	far	from	straightforward.	In	the	example	above,	

an	extreme,	but	entirely	possible,	case	occurs	when,	by	chance,	the	unobserved	confounder	is	
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perfectly	correlated	with	the	treatment;	unless	there	are	actual	replications,	the	false	certainty	

that	such	an	experiment	provides	will	be	reinforced	by	false	significance	tests.		

1.2.4	Testing	for	balance		

In	practice,	trialists	in	economics	(and	in	some	other	disciplines)	usually	carry	out	a	statistical	

test	for	balance	after	randomization	but	before	analysis,	presumably	with	the	aim	of	taking	

some	appropriate	action	if	balance	fails.	The	first	table	of	the	paper	typically	presents	the	sam-

ple	means	of	observable	covariates—the	observable	x’s	in	(3),	which	are	either	causes	in	their	

own	right	or	interact	with	the	  β 's—for	the	control	and	treatment	groups,	together	with	their	

differences,	and	tests	for	whether	or	not	they	are	significantly	different	from	zero,	either	varia-

ble	by	variable,	or	jointly.	These	tests	are	appropriate	if	we	are	concerned	that	the	random	

number	generator	might	have	failed	(because	we	are	drawing	playing	cards,	rolling	dice,	or	

spinning	bottle	tops,	though	presumably	not	if	the	randomization	is	done	by	a	random	number	

generator,	always	supposing	that	there	is	such	a	thing	as	randomness,	Singer	and	Pincus	(1998)),	

or	if	we	are	worried	that	the	randomization	is	undermined	by	non-blinded	subjects	or	trialists	

systematically	undermining	the	allocation.	Otherwise,	as	the	next	paragraph	shows,	the	test	

makes	no	sense	and	is	not	informative,	which	does	not	seem	to	stop	it	being	routinely	used.		

If	we	write	 µ0 	and	 µ1 	for	the	(vectors	of)	population	means	(i.e.	the	means	over	all	

possible	randomizations)	of	the	observed	x’s	in	the	control	and	treatment	groups	at	the	point	of	

assignment,	the	null	hypothesis	is	(presumably,	as	judged	by	the	typical	balance	test)	that	the	

two	vectors	are	identical,	with	the	alternative	being	that	they	are	not.	But	if	the	randomization	

has	been	correctly	done,	the	null	hypothesis	is	true	by	construction,	see	e.g.	Altman	(1985)	and	

Senn	(1994),	which	may	help	explain	why	it	so	rarely	fails	in	practice.	Indeed,	although	we	can-

not	“test”	it,	we	know	that	the	null	hypothesis	is	also	true	for	the	unobservable	components	of	

x.	Note	the	contrast	with	the	statements	quoted	above	claiming	that	RCTs	guarantee	balance	on	

causes	across	treatment	and	control	groups.	Those	statements	refer	to	balance	of	causes	at	the	

point	of	assignment	in	any	single	trial,	which	is	not	guaranteed	by	randomization,	whereas	the	

balance	tests	are	about	the	balance	of	causes	at	the	point	of	assignment	in	expectation	over	

many	trials,	which	is	guaranteed	by	randomization.	The	confusion	is	perhaps	understandable,	

but	it	is	confusion	nevertheless.	Of	course,	it	makes	sense	to	look	for	balance	between	observed	

covariates	using	some	more	appropriate	distance	measure	for	example	the	normalized	differ-

ence	in	means,	Imbens	and	Wooldridge	(2009,	equation	3).		
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1.2.5	Methods	for	balancing	

One	procedure	to	improve	balance	is	to	adapt	the	design	before	randomization,	for	example	by	

stratification.	Fisher,	who	as	the	quote	above	illustrates,	was	well	aware	of	the	loss	of	precision	

from	randomization	argued	for	“blocking”	(stratification)	in	agricultural	trials	or	for	using	Latin	

Squares,	both	of	which	restrict	the	amount	of	imbalance.	Stratification,	to	be	useful,	requires	

some	prior	understanding	of	the	factors	that	are	likely	to	be	important,	and	so	it	takes	us	away	

from	the	“no	knowledge	required,”	or	“no	priors	accepted”	appeal	of	RCTs.	But	as	Scriven	(1974,	

103)	notes:	“cause	hunting,	like	lion	hunting,	is	only	likely	to	be	successful	if	we	have	a	consider-

able	amount	of	relevant	background	knowledge,”	or	even	more	strongly,	“no	causes	in,	no	

causes	out,”	Cartwright	(1994,	Chapter	2).	Stratification	in	RCTs,	as	in	other	forms	of	sampling,	is	

a	standard	method	for	using	background	knowledge	to	increase	the	precision	of	an	estimator.	It	

has	the	further	advantage	that	it	allows	for	the	exploration	of	different	average	treatment	ef-

fects	in	different	strata	which	can	be	useful	in	adapting	or	transporting	the	results	to	other	loca-

tions,	see	Section	2.	

	 Stratification	is	not	possible	when	there	are	too	many	covariates,	or	if	each	has	many	

values,	so	that	there	are	more	cells	than	can	be	filled	given	the	sample	size.	An	alternative	is	to	

re-randomize,	repeating	the	randomization	until	the	distance	between	the	observed	covariates	

is	less	than	some	predetermined	criteria.	Morgan	and	Rubin	(2012)	suggest	the	Mahalanobis	D–

statistic,	and	use	Fisher’s	randomization	inference	(to	be	discussed	further	below)	to	calculate	

standard	errors	that	take	the	re-randomization	into	account.	An	alternative,	widely	adapted	in	

practice,	is	to	adjust	for	covariates	by	running	a	regression	(or	covariance)	analysis,	with	the	

outcome	on	the	left	hand	side	and	the	treatment	dummy	and	the	covariates	as	explanatory	var-

iables,	including	possible	interactions	between	covariates	and	treatment	dummies.		

Freedman	(2008)	has	analyzed	this	method	and	argues		“if	adjustment	made	a	substan-

tial	difference,	we	would	suggest	much	caution	when	interpreting	the	results.”	But	a	substantial	

difference	is	exactly	what	we	would	like	to	see,	at	least	some	of	the	time,	if	the	adjustment	

moves	the	estimate	closer	to	the	truth.	Freedman	shows	that	the	adjusted	estimate	of	the	ATE	

is	biased	in	finite	samples,	with	the	bias	depending	on	the	correlation	between	the	squared	

treatment	effect	and	the	covariates.	There	is	also	no	general	guarantee	that	the	regression	ad-

justment	will	generate	a	more	precise	estimate,	although	it	will	do	so	if	there	are	equal	numbers	

of	treatments	and	controls	or	if	the	treatment	effects	are	constant	over	units	(in	which	case	

there	will	also	be	no	bias).	Even	with	bias,	the	regression	adjustment	is	attractive	if	it	does	in-
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deed	trade	off	bias	for	precision,	though	presumably	not	to	RCT	purists	for	whom	unbiasedness	

is	the	sine	qua	non.	Note	again	that	the	increased	precision,	when	it	exists,	comes	from	using	

prior	knowledge	about	the	variables	that	are	likely	to	be	important	for	the	outcome.	That	the	

background	knowledge	or	theory	is	widely	shared	and	understood	will	also	provide	some	pro-

tection	against	data	mining	by	searching	through	covariates	in	the	search	for	(perhaps	falsely)	

estimated	precision.	

1.2.6	Should	we	randomize?	

The	tension	between	randomization	and	precision	goes	back	to	the	early	debate	between	Fisher	

and	Student	(Gosset)	who	never	accepted	Fisher’s	arguments	for	randomization,	see	also	Ziliak	

(2014).	In	his	debate	with	Fisher	about	agricultural	trials,	Student	argued	that	randomization	

ignored	relevant	prior	information,	for	example	about	how	likely	confounders	would	be	distrib-

uted	across	the	test	plots,	so	that	randomization	wasted	resources	and	led	to	unnecessarily	

poor	estimates.	This	general	question	of	whether	randomization	is	desirable	has	been	reopened	

in	recent	papers	by	Kasy	(2016),	Banerjee,	Chassang,	and	Snowberg	(2016)	and	Banerjee,	

Chassang,	Montero,	and	Snowberg	(2016).		

Refer	back	to	the	MSE	introduced	above,	and	consider	designing	an	experiment	that	will	

make	this	as	small	as	possible.	Unfortunately,	this	is	not	generally	possible;	for	example,	the	“es-

timator”	of	3,	say,	for	the	ATE	has	the	lowest	possible	mean-squared	error	if	the	true	ATE	is	ac-

tually	3.	Instead,	we	need	to	average	the	MSE	over	a	distribution	of	possible	ATEs.	This	leads	to	

a	decision	theory	approach	to	estimation	whereby	a	Bayesian	econometrician	will	estimate	the	

ATE	by	choosing	the	allocation	of	treatment	and	controls	so	as	to	minimize	the	expected	value	

of	a	loss	function—the	MSE	being	one	example.	Such	an	approach	requires	us	to	specify	a	prior	

on	the	ATE,	or	more	generally,	on	the	expectation	of	outcomes	conditional	on	the	covariates.	

These	priors	are	formal	versions	of	the	issue	that	has	already	come	up	repeatedly,	that	to	get	

good	estimators,	we	need	to	know	something	about	how	the	covariates	affect	the	outcome.	

Kasy	(2016)	solves	this	problem	for	the	case	of	expected	MSE	and	shows	that	randomization	is	

undesirable;	it	simply	adds	noise	and	makes	the	MSE	larger.	He	uses	a	non-parametric	prior	that	

has	proved	useful	in	a	number	of	other	applications—we	could	presumably	do	even	better	if	we	

were	prepared	to	commit	further,	and	he	provides	code	to	implement	his	method,	which	shows	

a	20	percent	reduction	in	MSE	compared	with	randomization	(14	percent	for	stratified	randomi-

zation)	for	the	well-known	Tennessee	STAR	class-size	experiment.		
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Banerjee	et	al	propose	a	more	general	loss	function	and	prove	the	comparable	theorem,	

that	randomization	leads	to	larger	losses	than	the	optimal	non-random	purposive	assignment.	

These	authors	recommend	randomization	on	other	grounds,	which	we	will	discuss	below,	but	

agree	that,	for	standard	statistical	efficiency	or	maximization	of	expected	utility	randomization	

should	not	be	used	in	experimental	design.	Student	was	right.	

Several	points	should	be	noted.	First,	the	anti-randomization	theorem	is	not	a	justifica-

tion	of	any	non-experimental	design,	for	example	one	that	compares	outcomes	of	those	who	do	

or	do	not	self-select	into	treatment.	Selection	effects	are	real	enough,	and	if	selection	is	based	

on	unobservable	causes,	comparison	of	treated	and	controls	will	be	biased.	One	acceptable	non-

random	scheme	is	to	use	the	observable	covariates	to	divide	the	study	sample	into	cells	within	

which	all	observations	have	the	same	value	and	then	divide	each	cell	into	treatments	and	con-

trols.	Within	each	cell,	or	for	those	units	on	which	we	have	no	information,	we	can	choose	any	

way	we	like,	including	randomly,	though	randomization	has	no	advantage	or	disadvantage.	Such	

allocations	rule	out	self-selection	(or	doctor	or	program	administrator	selection)	where	the	indi-

vidual	(doctor,	or	administrator)	has	information	not	visible	to	the	person	assigning	treatments	

and	controls.	The	key	is	that	the	person	who	makes	the	assignment	(the	analyst)	uses	all	of	the	

information	that	he	or	she	possesses,	and	that	once	this	has	been	taken	into	account,	all	units	

are	interchangeable	conditional	on	that	information,	so	that	assignment	beyond	that	does	not	

matter.	Of	course,	the	program	administrators	must	enforce	the	analyst’s	assignment,	so	that	

private	information	that	they	or	the	units	possess	is	not	allowed	to	affect	the	assignment,	condi-

tional	on	the	information	used	by	the	analyst.	Given	this,	selection	on	unobservables	is	ruled	

out,	and	does	not	affect	the	results.	Randomization	is	not	required	to	eliminate	selection	bias.		

Whether	it	is	really	possible	for	the	analyst	to	assign	arbitrarily	is	an	open	question,	as	is	

whether	“randomization”	from	a	random-number	generator	will	do	so.	Even	machine-generated	

sequences	have	causes,	and	even	if	the	analyst	has	only	a	set	of	uninformative	labels	for	the	

units,	those	too	must	come	from	somewhere,	so	that	it	is	possible	that	those	causes	are	linked	

to	the	unobserved	causes	in	the	experiment.	We	do	not	attempt	to	deal	here	with	these	deep	

issues	on	the	meaning	of	randomization,	but	see	Singer	and	Pincus	(1998).	

According	to	Chalmers	(2001)	and	Bothwell	and	Podolsky	(2016),	the	development	of	

randomization	in	medicine	originated	with	Bradford-Hill	who	used	randomization	in	the	first	RCT	

in	medicine—the	streptomycin	trial—because	it	prevented	doctors	selecting	patients	on	the	

basis	of	perceived	need	(or	against	perceived	need,	leaning	over	backward	as	it	were),	an	argu-
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ment	more	recently	echoed	by	Worrall	(2007).	Randomization	serves	this	purpose,	but	so	do	

other	non-discretionary	schemes;	what	is	required	is	that	the	hidden	information	not	affect	the	

allocation.	While	it	is	true	that	doctors	cannot	be	allowed	to	make	the	assignment,	it	is	not	true	

that	randomization	is	the	only	scheme	that	can	be	enforced.		

Second,	the	ideal	rules	by	which	units	are	allocated	to	treatment	or	control	depend	on	

the	covariates,	and	on	the	investigators’	priors	about	how	the	covariates	affect	the	outcomes.	

This	opens	up	all	sorts	of	methods	of	inference	that	are	excluded	by	pure	randomization.	For	

example,	the	hypothetico-deductive	method	works	by	using	theory	to	make	a	prediction	that	

can	be	taken	to	the	data;	here	the	predictions	would	be	of	the	form	that	a	unit	with	characteris-

tics	x	will	respond	in	a	particular	way	to	treatment,	falsification	of	which	can	be	tested	by	an	

appropriate	allocation	of	units	to	treatment.	Banerjee,	Chassang	and	Snowberg	(2016)	provide	

such	examples.	

Third,	randomization,	by	running	roughshod	over	prior	information	from	theory	and	

from	the	covariates,	is	wasteful	and	even	unethical	when	it	unnecessarily	exposes	people,	or	

unnecessarily	many	people,	to	possible	harm	in	a	risky	experiment,	see	Worrall	(2002)	for	an	

egregious	case	of	how	an	unthinking	demand	for	randomization	and	the	refusal	to	accept	prior	

information	put	children’s	lives	directly	at	risk.		

Fourth,	the	non-random	methods	use	prior	information,	which	is	why	they	do	better	

than	randomization.	This	is	both	an	advantage	and	a	disadvantage,	depending	on	one’s	perspec-

tive.	If	prior	information	is	not	widely	accepted,	or	is	seen	as	non-credible	by	those	we	are	seek-

ing	to	persuade,	we	will	generate	more	credible	estimates	if	we	do	not	use	those	priors.	Indeed,	

this	is	why	Banerjee,	Chassang	and	Snowberg	(2016)	recommend	randomized	designs,	including	

in	medicine	and	in	development	economics.	They	develop	a	theory	of	an	investigator	who	is	fac-

ing	an	adversarial	audience	that	will	challenge	any	prior	information	and	can	even	potentially	

veto	results	that	are	based	on	it	(think	administrative	agencies	or	journal	referees).	The	experi-

menter	trades	off	his	or	her	own	desire	for	precision	(and	preventing	possible	harm	to	subjects),	

which	uses	prior	information,	against	the	wishes	of	the	audience,	who	want	nothing	of	the	pri-

ors.	Even	then,	the	approval	of	this	audience	is	only	ex	ante;	once	the	fully	randomized	experi-

ment	has	been	done,	nothing	stops	critics	arguing	that,	in	fact,	the	randomization	did	not	offer	a	

fair	test.	Among	doctors	who	use	RCTs,	and	especially	meta-analysis,	such	arguments	are	(ap-

propriately)	common;	see	again	Kramer	(2016).	
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As	we	noted	in	the	Introduction,	much	of	the	public	has	come	to	question	expert	prior	

knowledge,	and	Banerjee,	Chassang,	Montero	and	Snowberg	(2016)	have	provided	an	elegant	

(positive)	account	of	why	RCTs	will	flourish	in	such	an	environment.	In	cases	where	there	is	good	

reason	to	doubt	the	good	faith	of	experimenters,	as	in	some	pharmaceutical	trials,	randomiza-

tion	will	indeed	be	the	appropriate	response.	But	we	believe	such	arguments	are	deeply	de-

structive	for	scientific	endeavor	and	should	be	resisted	as	a	general	prescription	for	scientific	

research.	Economists	and	other	social	scientists	know	a	great	deal,	and	there	are	many	areas	of	

theory	and	prior	knowledge	that	are	jointly	endorsed	by	large	numbers	of	knowledgeable	re-

searchers.	Such	information	needs	to	be	built	on	and	incorporated	into	new	knowledge,	not	dis-

carded	in	the	face	of	aggressive	know-nothing	ignorance.	The	systematic	refusal	to	use	prior	

knowledge	and	the	associated	preference	for	RCTs	are	recipes	for	preventing	cumulative	scien-

tific	progress.	In	the	end,	it	is	also	self-defeating;	to	quote	Rodrik	(2016)	“the	promise	of	RCTs	as	

theory-free	learning	machines	is	a	false	one.”		

1.3	Statistical	inference	in	RCTs	

If	we	are	to	interpret	the	results	of	an	RCT	as	demonstrating	the	causal	effect	of	the	treatment	

in	the	trial	population,	we	must	be	able	to	tell	whether	the	difference	between	the	control	and	

treatment	means	could	have	come	about	by	chance.	Any	conclusion	about	causality	is	hostage	

to	our	ability	to	calculate	standard	errors	and	accurate	p–values.	But	this	is	not	generally	possi-

ble	without	assumptions	that	go	beyond	those	needed	to	support	the	basic	theorem	of	RCTs.	In	

particular,	it	has	long	been	known	that	the	mean—and	a	fortiori	the	difference	between	two	

means—is	a	statistic	that	is	sensitive	to	outliers.	Indeed	Bahadur	and	Savage	(1956)	demon-

strate	that,	without	restrictions	on	the	parent	distributions,	standard	t–tests	are	inherently	un-

reliable.	

The	key	problem	here	is	skewness;	standard	t–tests	break	down	in	distributions	with	

large	skewness,	see	Lehmann	and	Romano	(2005,	p.	466–8).	In	consequence,	RCTs	will	not	work	

well	when	the	distribution	of	the	individual	treatment	effects	is	strongly	asymmetric,	at	least	if	

the	standard	two-sample	t–statistics	(or	equivalently	White’s	(1980)	heteroskedastic	robust	re-

gression	t–values)	are	used.	While	we	may	be	willing	to	assume	that	treatment	effects	are	sym-

metric	in	some	cases,	the	need	for	such	an	assumption—which	requires	prior	knowledge	about	

the	specific	process	being	studied—undermines	the	argument	that	RCTs	are	largely	assumption	

free	and	do	not	depend	on	such	knowledge.	There	is	a	deep	irony	here.	In	the	search	for	robust-

ness	and	the	desire	to	do	away	with	unnecessary	assumptions,	the	RCT	can	deliver	the	mean	of	
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the	ATE,	yet	the	mean—as	opposed	to	the	median,	which	cannot	be	estimated	by	an	RCT—does	

not	permit	robust	probability	statements	about	the	estimates	of	the	ATE		

	 How	difficult	is	it	to	maintain	symmetry?	And	how	badly	is	inference	affected	when	the	

distribution	of	treatment	effects	is	not	symmetric?	In	economics,	many	trials	have	outcomes	

valued	in	money.	Does	an	anti-poverty	innovation—for	example	microfinance—increase	the	

incomes	of	the	participants?	Income	itself	is	not	symmetrically	distributed,	and	this	might	be	

true	of	the	treatment	effects	too,	if	there	are	a	few	people	who	are	talented	but	credit-

constrained	entrepreneurs	and	who	have	treatment	effects	that	are	large	and	positive,	while	

the	vast	majority	of	borrowers	fritter	away	their	loans,	or	at	best	make	positive	but	modest	

profits.	Another	important	example	is	expenditures	on	healthcare.	Most	people	have	zero	ex-

penditure	in	any	given	period,	but	among	those	who	do	incur	expenditures,	a	few	individuals	

spend	huge	amounts	that	account	for	a	large	share	of	the	total.	Indeed,	in	the	famous	Rand	

health	experiment,	Manning,	Newhouse	et	al.	(1987,	1988),	there	is	a	single	very	large	outlier.	

The	authors	realize	that	the	comparison	of	means	across	treatment	arms	is	fragile,	and,	alt-

hough	they	do	not	see	their	problem	exactly	as	described	here,	they	obtain	their	preferred	es-

timates	using	a	structural	approach	that	is	designed	to	explicitly	model	the	skewness	of	expendi-

tures.		

	 In	some	cases,	it	will	be	appropriate	to	deal	with	outliers	by	trimming,	eliminating	ob-

servations	that	have	large	effects	on	the	estimates.	But	if	the	experiment	is	a	project	evaluation	

designed	to	estimate	the	net	benefits	of	a	policy,	the	elimination	of	genuine	outliers,	as	in	the	

Rand	Health	Experiment,	will	vitiate	the	analysis.	It	is	precisely	the	outliers	that	make	or	break	

the	program.	

1.3.1	Spurious	statistical	significance:	an	illustrative	example	

We	consider	an	example	that	illustrates	what	can	happen	in	a	realistic	but	simplified	case.	There	

is	a	parent	population,	or	population	of	interest,	defined	as	the	collection	of	units	for	which	we	

would	like	to	estimate	an	average	treatment	effect.	It	might	be	all	villages	in	India,	or	all	recipi-

ents	of	food	subsidies,	or	all	users	of	health	care	in	the	US.	From	this	population	we	have	a	sam-

ple	that	is	available	for	randomization,	the	trial	or	experimental	sample;	in	a	randomized	con-

trolled	trial,	this	will	subsequently	be	randomly	divided	into	treatments	and	controls.		Ideally,	

the	trial	sample	would	be	randomly	selected	from	the	parent	sample,	so	that	the	sample	aver-

age	treatment	effect	would	be	an	unbiased	estimator	of	the	population	average	treatment	ef-

fect;	indeed	in	some	cases	the	complete	population	of	interest	is	available	for	the	trial.	Clearly,	
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in	these	ideal	cases,	it	is	straightforward	to	use	standard	sampling	theory	to	generalize	the	trial	

results	from	the	sample	to	the	population.	However,	for	a	number	of	practical	and	conceptual	

reasons,	the	trial	sample	is	rarely	either	the	whole	population	or	a	randomly	selected	subset,	

see	Shadish	et	al	(2002,	pp.	341–8)	for	a	good	discussion	of	both	practical	and	theoretical	obsta-

cles.	

In	our	illustrative	example,	there	is	parent	population	each	member	of	which	has	his	or	

her	own	treatment	effect;	these	are	continuously	distributed	with	a	shifted	lognormal	distribu-

tion	with	zero	mean	so	that	the	population	average	treatment	effect	is	zero.	The	individual	

treatment	effects	β 	are	distributed	so	that	 β + e0.5 ∼ Λ(0,1) ,	for	standardized	lognormal	dis-

tribution	Λ. 	We	have	something	like	a	microfinance	trial	in	mind,	where	there	is	a	long	positive	

tail	of	rare	individuals	who	can	do	amazing	things	with	credit,	while	most	people	cannot	use	it	

effectively.	A	trial	(experimental)	sample	of	2n 	individuals	is	randomly	drawn	from	the	parent	

and	is	randomly	split	between	n	treatments	and	n	controls.	In	the	absence	of	treatment,	every-

one	in	the	sample	records	zero,	so	the	sample	average	treatment	effect	in	any	one	trial	is	simply	

the	mean	outcome	among	the	n	treatments.	For	values	of	n	equal	to	25,	50,	100,	200,	and	500	

we	draw	100	trial/experimental	samples	each	of	size	2n;	with	five	values	of	n,	this	gives	us	500	

trial/experimental	samples	in	all.	For	each	of	these	500	samples,	we	randomize	into	n	controls	

and	n	treatments,	estimate	the	ATE	and	its	estimated	t–value	(using	the	standard	two-sample	t–

value,	or	equivalently,	by	running	a	regression	with	robust	t–values),	and	then	repeat	1,000	

times,	so	we	have	1,000	ATE	estimates	and	t–values	for	each	of	the	500	trial	samples;	these	al-

low	us	to	assess	the	distribution	of	ATE	estimates	and	their	nominal	t–values	for	each	trial.		

	

Table	1:	RCTs	with	skewed	treatment	effects	

Sample	size	 Mean	of	ATE	

estimates	

Mean	of	nominal	t–

values	

Fraction	null	reject-

ed	(percent)	

25	

50	

0.0268	

0.0266	

–0.4274	

–0.2952	

13.54	

11.20	

100	 –0.0018	 –0.2600	 8.71	

200	 0.0184	 –0.1748	 7.09	

500	 –0.0024	 –0.1362	 6.06	
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Note:	1,000	randomizations	on	each	of	100	draws	of	the	trial	sample	randomly	drawn	from	a	
lognormal	distribution	of	treatment	effects	shifted	to	have	a	zero	mean.	

The	results	are	shown	in	Table	1.	Each	row	corresponds	to	a	sample	size.	In	each	row,	

we	show	the	results	of	100,000	individual	trials,	composed	of	1,000	replications	on	each	of	the	

100	trial	(experimental)	samples.	The	columns	are	averaged	over	all	100,000	trials.		

The	last	column	shows	the	fractions	of	times	the	true	null	is	rejected	and	is	the	key	re-

sult.	When	there	are	only	50	treatments	and	50	controls	(row	2),	the	(true)	null	is	rejected	11.2	

percent	of	the	time,	instead	of	the	5	percent	that	we	would	like	and	expect	if	we	were	unaware	

of	the	problem.	When	there	are	500	units	in	each	arm,	the	rejection	rate	is	6.06	percent,	much	

closer	to	the	nominal	5	percent.		

Why	does	the	standard	application	of	the	t–distribution	give	such	strange	results	when	

all	we	are	doing	is	estimating	a	mean?	The	problem	cases	are	when	the	trial	sample	happens	to	

contain	one	or	more	outliers,	something	that	is	always	a	risk	given	the	long	positive	tail	of	the	

parent	distribution.	When	this	happens,	everything	depends	on	whether	the	outlier	is	among	

the	treatments	or	the	controls;	in	effect	the	outliers	become	the	sample,	reducing	the	effective	

number	of	degrees	of	freedom.		

	

Figure	1:	Estimates	of	an	ATE	with	an	outlier	in	the	trial	sample	

Figure	1	illustrates	the	estimated	average	treatment	effects	from	an	extreme	case	from	

the	simulations	with	100	observations	in	total,	the	second	row	of	Table	1;	the	histogram	shows	

the	1,000	estimates	of	the	ATE.	The	trial	sample	has	a	single	large	outlying	treatment	effect	of	
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48.3;	the	mean	(s.d.)	of	the	other	99	observations	is	–0.51	(2.1);	when	the	outlier	is	in	the	

treatment	group,	we	get	the	right-hand	side	of	the	figure,	when	it	is	not,	we	get	the	left-hand	

side.	On	the	right-hand	side,	when	the	outlier	is	among	the	treatment	group,	the	dispersion	

across	outcomes	is	large,	as	is	the	estimated	standard	error,	and	so	those	outcomes	rarely	reject	

the	null	using	the	standard	table	of	t–values.	The	over-rejections	come	from	the	left-hand	side	

of	the	figure	when	the	outlier	is	in	the	control	group,	the	outcomes	are	not	so	dispersed,	and	

the	t–values	can	be	large,	negative,	and	significant.	While	these	cases	of	bimodal	distributions	

may	not	be	common,	and	depend	on	large	outliers,	they	illustrate	the	process	that	generates	

the	over-rejections	and	spurious	significance.	

We	could	escape	these	problems	if	we	could	calculate	the	median	treatment	effect,	but	

RCTs	cannot	(without	further	assumption)	identify	the	median,	only	the	mean,	and	it	is	the	

mean	that	is	at	risk	because	of	the	Bahadur-Savage	theorem.	Note	too	that	there	is	only	moder-

ate	comfort	to	be	taken	in	large	sample	sizes.	While	the	last	row	is	certainly	better	than	the	oth-

ers,	there	are	still	many	trial	samples	that	are	going	to	give	sample	average	effects	that	are	sig-

nificant,	even	when	the	number	we	want	is	zero.	The	proof	of	the	Bahadur-Savage	theorem	

works	by	noting	that	for	any	sample	size,	it	is	always	possible	to	find	an	outlier	that	will	give	a	

misleading	t–value.	Nor	is	there	an	escape	here	by	using	the	Fisher	exact	method	for	inference;	

the	Fisher	method	tests	the	null	hypothesis	that	all	of	the	treatment	effects	are	zero	whereas	

what	we	are	interested	in	here,	at	least	if	we	want	to	do	project	evaluation	or	cost-benefit	anal-

ysis,	is	that	the	average	treatment	effect	is	zero.	

The	problems	illustrated	above,	that	stem	from	the	Bahadur-Savage	theorem,	are	cer-

tainly	not	confined	to	RCTs,	and	occur	more	generally	in	econometric	and	statistical	work.	How-

ever,	the	analysis	here	illustrates	that	the	simplicity	of	ideal	RCTs,	subtracting	one	mean	from	

another,	brings	no	exemption	from	troublesome	problems	of	inference.	Escape	from	these	is-

sues,	as	in	the	Rand	Health	Experiment,	requires	explicit	modeling,	or	might	be	best	handled	by	

estimating	quantiles	of	the	treatment	distribution,	which	again	requires	additional	assumptions.		

	 Our	reading	of	the	literature	on	RCTs	in	development	suggests	that	they	are	not	exempt	

from	these	concerns.	Many	development	trials	are	run	on	(sometimes	very)	small	samples,	they	

have	treatment	effects	where	asymmetry	is	hard	to	rule	out—especially	when	the	outcomes	are	

in	money—and	they	often	give	results	that	are	puzzling,	or	at	least	not	easily	interpreted	in	

terms	of	economic	theory.	Neither	Banerjee	and	Duflo	(2012)	nor	Karlan	and	Appel	(2011),	who	

cite	many	RCTs,	raise	concerns	about	misleading	inference,	treating	all	results	as	solid.	No	doubt	
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there	are	behaviors	in	the	world	that	are	inconsistent	with	standard	economics,	and	some	can	

be	explained	by	standard	biases	in	behavioral	economics,	but	it	would	also	be	good	to	be	suspi-

cious	of	the	significance	tests	before	accepting	that	an	unexpected	finding	is	well	supported	and	

theory	should	be	revised.	Replication	of	results	in	different	settings	may	be	helpful—if	they	are	

the	right	kind	of	places	(see	our	discussion	in	Section	2)—but	it	hardly	solves	the	problem	given	

that	the	asymmetry	may	be	in	the	same	direction	in	different	settings	(and	seems	likely	to	be	so	

in	just	those	settings	that	are	sufficiently	like	the	original	trial	setting	to	be	of	use	for	inference	

about	the	trial	population),	and	that	the	“significant”	t–values	will	show	departures	from	the	

null	in	the	same	direction,	thus	replicating	spurious	findings.			

1.2.11:	Significance	tests:	Fisher-Behrens,	robust	inference,	and	multiple	hypotheses	

Skewness	of	treatment	effects	is	not	the	only	threat	to	accurate	significance	tests.	The	two–

sample	t–statistic	is	computed	by	dividing	the	ATE	by	the	estimated	standard	error	whose	

square	is	given	by	

	
   

⌢σ 2 =
(n1 −1)−1 (Yi −

⌢µ1)2

i∈1
∑
n1

+
(n0 −1)−1 (Yi −

⌢µ0 )2

i∈0
∑
n0

		 (5)	

	where	0	refers	to	controls	and	1	to	treatments,	so	that	there	are	  n1 	treatments	and	  n0 	con-

trols,	and	 µ̂1 	and	 µ̂0 	are	the	two	means.	As	has	been	long	known,	this	t–statistic	is	not	distrib-

uted	as	Student’s	t	if	the	two	variances	(treatment	and	control)	are	not	identical;	this	is	known	

as	the	Behrens–Fisher	problem.	In	extreme	cases,	when	one	of	the	variances	is	zero,	the	t–

statistic	has	effective	degrees	of	freedom	half	of	that	of	the	nominal	degrees	of	freedom,	so	that	

the	test-statistic	has	thicker	tails	than	allowed	for,	and	there	will	be	too	many	rejections	when	

the	null	is	true.		

In	a	remarkable	recent	paper,	Young	(2016)	argues	that	this	problem	gets	much	worse	

when	the	trial	results	are	analyzed	by	regressing	outcomes	not	only	on	the	treatment	dummy,	

but	also	on	additional	controls,	some	of	which	might	interact	with	the	treatment	dummy.	Again	

the	problem	concerns	outliers	in	combination	with	the	use	of	clustered	or	robust	standard	er-

rors.	When	the	design	matrix	is	such	that	the	maximal	influence	is	large,	so	that	for	some	obser-

vations	outcomes	have	large	influence	on	their	own	predicted	values,	there	is	a	reduction	in	the	

effective	degrees	of	freedom	for	the	t–value(s)	of	the	average	treatment	effect(s)	leading	to	

spurious	findings	of	significance.		
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Young	looks	at	2003	regressions	reported	in	53	RCT	papers	in	the	American	Economic	

Association	journals	and	recalculates	the	significance	of	the	estimates	using	Fisher’s	randomiza-

tion	inference	applied	to	the	authors’	original	data;	see	again	Imbens	and	Wooldridge	(2009)	for	

a	good	modern	account	of	Fisher’s	method.	In	30	to	40	percent	of	the	estimated	treatment	ef-

fects	in	individual	equations	with	coefficients	that	are	reported	as	significant,	he	cannot	reject	

the	null	of	no	effect;	the	fraction	of	spuriously	significant	results	increases	further	when	he	sim-

ultaneously	tests	for	all	results	in	each	paper.		These	spurious	findings	come	in	part	from	the	

well-known	problem	of	multiple-hypothesis	testing,	both	within	regressions	with	several	treat-

ments	and	across	regressions.	Within	regressions,	treatments	are	largely	orthogonal,	but	au-

thors	tend	to	emphasize	significant	t–values	even	when	the	corresponding	F-tests	are	insignifi-

cant.	Across	equations,	results	are	often	strongly	correlated,	so	that,	at	worst,	different	regres-

sions	are	reporting	variants	of	the	same	result,	thus	spuriously	adding	to	the	“kill	count”	of	sig-

nificant	effects.	At	the	same	time,	the	pervasiveness	of	observations	with	high	influence	gener-

ates	spurious	significance	on	its	own.	

Our	sense	is	that	these	issues	are	being	taken	more	seriously	in	recent	work,	especially	

as	concerns	multiple	hypothesis	testing.	Young	himself	is	a	strong	proponent	of	RCTs	in	general	

and	believes	that	randomization	inference	will	yield	correct	inferences.	Yet	randomization	infer-

ence	can	only	test	the	null	that	all	treatment	effects	are	zero,	that	the	experiment	does	nothing	

to	anyone,	whereas	many	investigators	are	interested	in	the	weaker	hypothesis	that	the	aver-

age	treatment	effect	is	zero.	This	simply	makes	matters	worse	since	the	stronger	hypothesis	

implies	the	weaker	hypothesis	and	there	are	presumably	undiscovered	cases	where	the	ATE	is	

spuriously	significant,	even	when	the	Fisher	test	rejects	that	all	treatment	effects	are	zero.	Note	

that	testing	does	not	always	match	logic;	it	is	possible	to	reject	the	null	that	the	ATE	is	zero	even	

when	we	can	simultaneously	accept	the	(joint)	hypothesis	that	all	treatment	effects	are	zero;	

this	is	familiar	from	OLS	regression,	where	an	F–test	can	show	joint	insignificance,	even	when	a	

t–test	of	some	linear	combination	is	significant.		

	 It	is	clear	that,	as	of	now,	all	reported	significance	levels	from	RCT	results	in	economics	

should	be	treated	with	considerable	caution.	Greater	care	about	skewness	and	outliers	would	

help,	as	would	greater	use	of	the	Fisher	method	and	of	procedures	that	deal	correctly	with	mul-

tiple	hypothesis	testing.	Yet	if	the	null	hypothesis	is	that	the	average	treatment	effect	is	zero,	as	

in	most	project	evaluation,	the	Fisher	test	is	not	available,	so	that	we	currently	do	not	have	a	

reliable	set	of	procedures.	Robust	or	clustered	standard	errors	are	necessary	to	allow	for	the	
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possibility	that	treatment	changes	variances,	and	the	inclusion	of	covariates	is	necessary	to	con-

trol	for	imbalance	in	finite	samples.	

1.3	Blinding	

Blinding	is	rarely	possible	in	economics	or	social	science	trials,	and	this	is	one	of	the	major	dif-

ferences	from	most	(although	not	all)	RCTs	in	medicine,	where	blinding	is	standard,	both	for	

those	receiving	the	treatment	and	those	administering	it.	Indeed,	the	ability	to	blind	has	been	

one	of	the	key	arguments	in	favor	of	randomization,	from	Bradford-Hill	in	the	1950s,	see	

Chalmers	(2003),	to	welfare	trials	today,	Gueron	and	Rolston	(2013).	Consider	first	the	blinding	

of	subjects.	Subjects	in	social	RCTs	usually	know	whether	they	are	receiving	the	treatment	or	not	

and	so	can	react	to	their	assignment	in	ways	that	can	affect	the	outcome	other	than	through	the	

operation	of	the	treatment;	in	econometric	language,	this	is	akin	to	a	violation	of	exclusion	re-

strictions,	or	a	failure	of	exogeneity.	In	terms	of	(1),	there	is	a	pathway	from	the	treatment	as-

signment	to	another	unobserved	cause,	which	will	result	in	a	biased	ATE.	This	is	not	to	argue	in	

favor	of	instrumental	variables	over	RCTs,	or	vice	versa,	but	simply	to	note	that,	without	blind-

ing,	RCTs	do	not	automatically	solve	the	selection	problem	any	more	than	IV	estimation	auto-

matically	solves	the	selection	problem.	In	both	cases,	the	exogeneity	(exclusion	restriction)	ar-

gument	needs	to	be	explicitly	made	and	justified.	Yet	the	literature	in	economics	gives	great	at-

tention	to	the	validity	of	exclusion	restrictions	in	IV	estimation,	while	tending	to	shrug	off	the	

essentially	identical	problems	with	lack	of	blinding	in	RCTs.	

Note	also	that	knowledge	of	their	assignment	may	cause	people	to	want	to	cross	over	

from	treatment	to	control,	or	vice	versa,	to	drop	out	of	the	program,	or	to	change	their	behavior	

in	the	trial	depending	on	their	assignment.	In	extreme	cases,	only	those	members	of	the	trial	

sample	who	expect	to	benefit	from	the	treatment	will	accept	treatment.		Consider,	for	example,	

a	trial	in	which	children	are	randomly	allocated	to	two	schools	that	teach	in	different	languages,	

Russian	or	English,	as	happened	during	the	breakup	of	the	former	Yugoslavia.	The	children	(and	

their	parents)	know	their	allocation,	and	the	more	educated,	wealthier,	and	less-ideologically	

committed	parents	whose	children	are	assigned	to	the	Russian-medium	schools	can	(and	did)	

remove	their	children	to	private	English-medium	schools.	In	a	comparison	of	those	who	accept-

ed	their	assignments,	the	effects	of	the	language	of	instruction	will	be	distorted	in	favor	of	the	

English	schools	by	differences	in	family	characteristics.	This	is	a	case	where,	even	if	the	random	

number	generator	is	fully	functional,	a	later	balance	test	will	show	systematic	differences	in	ob-
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servable	background	characteristics	between	the	treatment	and	control	groups;	even	if	the	bal-

ance	test	is	passed,	there	may	still	be	selection	on	unobservables	for	which	we	cannot	test.		

More	generally,	when	people	know	their	allocation,	when	they	have	a	stake	in	the	out-

come,	and	when	the	treatment	effect	is	different	for	different	people,	there	are	incentives	and	

opportunities	for	selection	in	response	to	the	randomization,	and	that	selection	can	contami-

nate	the	estimated	average	treatment	effect,	see	Heckman	(1997)	who	makes	the	same	point	in	

the	context	of	instrumental	variables.	Those	who	were	randomized	by	a	lottery	into	going	to	

Vietnam	will	have	different	treatment	effects	depending	on	their	labor	market	prospects,	and	

those	with	better	prospects	are	more	likely	to	resist	the	draft.	As	we	shall	see	in	the	next	sub-

section,	various	statistical	corrections	are	available	for	a	few	of	the	selection	problems	non-

blinding	presents,	but	all	rely	on	the	kind	of	assumptions	that,	while	common	in	observational	

studies,	RCTs	are	designed	to	avoid.	Our	own	view	is	that	assumptions	and	the	use	of	prior	

knowledge	are	what	we	need	to	make	progress	in	any	kind	of	analysis,	including	RCTs	whose	

promise	of	assumption-free	learning	is	always	likely	to	be	illusory.	

There	may	be	a	tendency	in	economics	to	focus	on	the	selection	bias	effects	of	non-

blinding	because	some	solutions	are	available,	but	selection	bias	is	not	the	only	serious	source	

of	bias	in	social	and	medical	trials.	Concerns	about	the	placebo,	Pygmalion,	Hawthorne,	John	

Henry,	and	'teacher/therapist'	effects	are	widespread	across	studies	of	medical	and	social	inter-

ventions.	This	literature	argues	that	double	blinding	should	be	replaced	by	quadruple	blinding;	

blinding	should	extend	beyond	participants	and	investigators	and	include	those	who	measure	

outcomes	and	those	who	analyze	the	data,	all	of	whom	may	be	affected	by	both	conscious	and	

unconscious	bias.	The	need	for	blinding	in	those	who	assess	outcomes	is	particularly	important	

in	any	cases	where	outcomes	are	not	determined	by	strictly	prescribed	procedures	whose	appli-

cation	is	transparent	and	checkable	but	requires	elements	of	judgment;	a	good	example	is	ther-

apists	who	are	asked	to	assess	the	extent	of	depression	in	clinical	trials	of	anti-depressants,	see	

Kramer	(2016).		

The	lesson	here	is	that	blinding	matters	and	is	very	often	missing.	There	is	no	reason	to	

suppose	that	a	poorly	blinded	trial	with	random	assignment	trumps	better	blinded	studies	with	

alternative	allocation	mechanisms,	or	matched	studies.		

1.13	What	do	RCTs	do	in	practice?		

The	execution	of	an	RCT	will	often	deviate	from	its	design.	People	may	not	accept	their	assign-

ment,	controls	may	manage	to	get	treatment,	and	vice	versa,	and	people	may	accept	their	as-
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signment,	but	drop	out	before	the	completion	of	the	study.	In	some	designs,	the	trial	works	by	

giving	people	incentives	to	participate,	for	example	by	mailing	them	a	voucher	that	gives	them	

subsidized	access	to	a	school	or	to	a	savings	product.	If	the	aim	is	to	evaluate	the	voucher	

scheme	itself,	no	new	issue	arises.	However,	if	the	aim	is	to	find	out	what	the	education	or	sav-

ings	program	does,	and	the	voucher	is	simply	a	device	to	induce	variation,	much	depends	on	

whether	or	not	people	decide	to	use	the	voucher	which,	like	attrition	and	crossover,	is	subject	

to	purposive	decisions	by	the	subjects	inducing	differences	between	treatments	and	controls.	

	 Everything	depends	on	the	purpose	of	the	trial.	In	the	example	above,	we	may	want	to	

evaluate	the	voucher	program,	or	we	may	want	to	find	out	what	the	saving	product	does	for	

people.	We	are	sometimes	interested	in	establishing	causality,	and	sometimes	in	estimating	an	

average	treatment	effect;	in	the	economics	literature,	some	writers	define	internal	validity	as	

getting	the	ATE	right,	while	others,	following	the	original	definition	of	the	term,	define	internal	

validity	as	getting	causality	right.	Sometimes	the	trial	limits	itself	to	establishing	causality	(or	to	

estimating	an	ATE)	in	only	the	trial	sample,	but	some	trials	are	more	ambitious,	and	try	to	estab-

lish	causality	(or	estimate	an	ATE)	for	a	broader	population	of	interest.	When,	as	is	common	in	

economics	trials,	no	limits	are	placed	on	the	heterogeneity	of	treatment	responses,	different	

trial	samples	and	different	populations	will	generally	have	different	ATEs	and	may	have	different	

casual	outcomes,	e.g.	if	the	treatment	has	an	effect	in	one	population	but	none	or	the	opposite	

effect	in	another.	Our	view	is	that	the	target	of	the	trial,	including	the	population	of	interest,	

needs	to	be	defined	in	advance.	Otherwise,	almost	any	estimated	number	can	be	interpreted	as	

a	valid	ATE	for	some	population,	we	allow	deviations	from	the	design	to	define	our	target,	and	

we	have	no	way	of	knowing	whether	apparently	contradictory	results	are	really	contradictory	or	

are	correct	for	the	population	on	which	they	were	derived.	Differences	in	results,	between	dif-

ferent	RCTs	and	between	RCTs	and	observational	studies,	may	owe	less	to	the	selection	effects	

that	RCTs	are	designed	to	remove,	than	to	the	fact	that	we	are	comparing	non-comparable	peo-

ple,	Heckman,	Lalonde,	and	Smith	(1999,	p.	2082).	Without	a	clear	idea	of	how	to	characterize	

the	population	of	individuals	in	the	trial,	whether	we	are	looking	for	an	ATE	or	to	identify	causal-

ity,	and	for	which	groups	enrolled	in	the	trial	the	results	are	supposed	to	hold,	we	have	no	basis	

for	thinking	about	how	to	use	the	trial	results	in	other	contexts.			

	 To	illustrate	some	of	the	issues,	consider	a	simple	RCT	in	which	a	treatment	T	is	adminis-

tered	to	a	trial	sample	that	is	split	between	a	treatment	group	of	size	n	and	a	control	group	of	

size	n,	but	that	only	a	fraction	p	of	the	treatment	group	accepts	their	assignment,	with	fraction	
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(1− p) 	receiving	no	treatment.	Suppose	that	the	parameter	of	interest	is	the	ATE	in	the	original	

population,	from	which	the	trial	sample	was	drawn	randomly.	Denote	by	β 	the	hypothetical	

ideal	ATE	estimate	that	would	have	been	calculated	if	everyone	had	accepted	assignment;	as	we	

have	seen,	this	is	an	unbiased	estimator	of	the	parameter	of	interest	for	both	the	trial	sample	

and	the	parent	population.	β 	cannot	be	calculated,	but	there	are	various	options.		

Option	one	is	to	ignore	the	original	assignment	and	calculate	the	difference	in	means	

between	those	who	received	the	treatment	and	those	who	did	not,	including	among	the	latter	

those	who	were	intended	to	receive	it	but	did	not.	Denote	this	(“as	treated”)	estimate	β1. 	Al-

ternatively,	option	two,	is	to	compare	the	average	outcome	among	those	who	were	intended	to	

be	treated	and	those	who	were	intended	to	be	controls.	Denote	this	estimate,	the	“intent	to	

treat”	(ITT)	estimator,	β2. 	It	is	easy	to	show	that	one	set	of	conditions	forβ1 = β 	is	that	those	

who	were	treated	have	the	same	ATE	as	those	who	were	intended	to	be	treated,	and	that	those	

who	broke	their	assignment	have	the	same	untreated	mean	as	those	who	were	assigned	to	be	

controls,	conditions	that	may	hold	in	some	applications,	for	example	where	the	treatment	ef-

fects	are	identical.		

The	ITT	estimator,	β2 ,	will	typically	be	closer	to	zero	than	is	β ,	and	it	will	certainly	be	

so	if	the	average	treatment	effect	among	those	who	break	their	assignment	is	the	same	as	the	

overall	ATE,	in	which	case	β2 = pβ.	For	these	reasons,	the	ITT	is	often	described	as	yielding	a	

conservative	estimate	and	is	routinely	advocated	in	medical	trials	even	though	it	is	an	attenuat-

ed	estimator	of	the	ATE.	A	third	estimator,	β3 ,	the	local	average	treatment	estimator	(LATE)	is	

computed	by	running	a	regression	of	outcomes	on	an	(actual)	treatment	dummy	using	the	

treatment	assignment	as	an	instrumental	variable.	In	this	case,	the	LATE	is	simply	the	ITT,	scaled	

up	by	the	reciprocal	of	p,	so	that	β3 = β2 / p. 	From	the	above,	the	LATE	is	β 	if	the	average	

treatment	effect	of	those	who	break	their	assignment	is	the	same	as	the	average	treatment	ef-

fect	in	general,	so	that	the	ITT	estimator	is	biased	down	by	counting	those	who	should	have	

been	treated	as	if	they	were	controls.	More	generally,	and	with	additional	assumptions,	Imbens	

and	Angrist	(1994)	show	that	the	LATE	is	the	average	treatment	effect	among	those	who	were	

induced	to	accept	the	treatment	by	their	assignment	to	treatment	status,	which	can	be	a	very	

different	object	from	the	original	target	of	investigation.	These	various	estimators,	the	ATE,	the	

ITT,	and	the	LATE,	are	all	averages	over	different	groups;	more	formally,	Heckman	and	Vytlacil	

(2005)	define	a	marginal	treatment	effect	(MTE)	as	the	ATE	for	those	on	the	margin	of	treat-
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ment—whatever	the	assignment	mechanism—and	show	that	the	other	estimators	can	be	

thought	of	as	averages	of	the	MTEs	over	different	populations.	

	 In	general,	and	unless	we	are	prepared	to	say	more	about	the	heterogeneity	in	the	

treatment	effects,	the	three	estimators	will	give	different	results	because	they	are	averages	over	

different	populations.	Economists	tend	to	believe	that	people	act	in	their	own	interest,	at	least	

in	part,	so	it	is	not	attractive	to	believe	that	those	who	break	their	assignments	have	the	same	

distribution	of	treatment	effects	as	do	those	who	accept	them.	In	Heckman’s	(1992)	analogy,	

people	are	not	like	agricultural	plots,	which	are	in	no	position	to	evade	the	treatment	when	they	

see	it	coming.	Such	purposive	behavior	will	generally	also	affect	the	composition	of	the	trial	

sample	compared	with	the	parent	population,	with	those	who	agree	to	participate	different	

from	those	who	do	not.	For	example,	people	may	dislike	randomization	because	of	the	risks	it	

entails,	or	people	may	seek	to	enter	trials	in	the	hope	that	they	will	receive	a	beneficial	treat-

ment	that	is	otherwise	unavailable.	A	famous	example	in	economics	is	the	Ashenfelter	(1978)	

pre-program	“dip,”	where	those	who	enter	trials	of	training	programs	tend	to	be	those	whose	

earnings	have	fallen	immediately	prior	to	enrolment,	see	also	Heckman	and	Smith	(1999).	Peo-

ple	who	participate	in	drug	trials	are	more	likely	to	be	sick	than	those	who	do	not,	or	are	likely	

to	be	those	who	have	failed	on	standard	medication.	Another	example	is	Chyn’s	(2016)	evidence	

that	those	who	applied	for	vouchers	in	the	Moving	to	Opportunity	experiment	and	were	thus	

eligible	for	randomization—and	only	a	quarter	of	those	who	were	eligible	actually	did	so—were	

those	who	were	already	making	unusual	efforts	on	their	children’s	behalf.	These	parents	had	

effectively	substituted	for	part	of	the	better	environment,	so	that	the	ATE	from	the	trial	under-

states	the	benefits	to	the	average	child	of	moving.	Similar	phenomena	occur	in	medicine.	In	the	

1954	trials	of	the	Salk	polio	vaccine	in	the	US,	the	rates	of	infection,	while	lowest	among	the	

treated	children,	were	higher	in	the	control	children	than	in	the	general	population	at	risk,	so	

that	the	parents	of	those	who	selected	into	the	trial	presumably	had	some	idea	that	they	might	

have	been	exposed,	Hausman	and	Wise	(1985,	p.	193–4).	In	this	case,	the	average	treatment	

effect	in	the	trial	sample	exaggerates	the	ATE	in	the	general	population,	which	is	what	we	want	

to	know	for	public	policy.		

Given	the	non-parametric	spirit	of	RCTs,	and	the	unwillingness	of	many	trialists	to	make	

assumptions	or	to	incorporate	prior	information,	the	only	way	forward	is	to	be	very	clear	about	

the	purpose	of	the	trial	and,	in	particular,	which	average	we	are	trying	to	estimate.	For	those	

who	focus	on	internal	validity	in	terms	of	establishing	causality	by	finding	an	ATE	significantly	
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different	from	zero,	the	definition	of	the	population	seems	to	be	a	secondary	concern.	The	idea	

seems	to	be	that	if	causality	is	established	in	some	population,	that	finding	is	important	in	itself,	

with	the	task	of	exploring	its	applicability	to	other	populations	left	as	a	secondary	matter.	For	

the	many	economic	or	cost–benefit	analyses	where	the	ATE	is	the	parameter	of	interest,	the	

population	of	interest	is	definitional,	and	the	inference	needs	to	focus	on	a	path	from	the	results	

of	the	trial	to	the	parameter	of	interest.	This	is	often	difficult	or	even	impossible	without	addi-

tional	assumptions	and/or	modeling	of	behavior,	including	the	decision	to	participate	in	the	tri-

al,	and	among	participants,	the	decision	not	to	drop	out.	Manski	(1990,	1995,	2003)	has	shown	

that,	without	additional	evidence,	the	population	ATE	is	not	(point)	identified	from	the	trial	re-

sults,	and	has	developed	non-parametric	bounds	(an	interval	estimate)	for	the	ATE.	As	with	the	

ITT,	these	bounds	are	sometimes	tight	enough	to	be	informative,	though	the	interval	defined	by	

the	bounds	will	often	contain	zero,	see	Manski	(2013)	for	a	discussion	aimed	at	a	broad	audi-

ence.	Faced	with	this,	many	scholars	are	prepared	to	make	assumptions	or	to	build	models	that	

give	more	precise	results.		

RCTs	may	tell	us	about	causality,	even	when	they	do	not	deliver	a	good	estimate	of	the	

ATE.		For	example,	if	the	ITT	estimate	is	significantly	different	from	zero,	the	treatment	has	a	

causal	effect	for	at	least	some	individuals	in	the	population.	The	same	is	true	if	the	LATE	is	signif-

icantly	different	from	zero;	again	the	treatment	is	causal	for	some	sub-population,	even	if	we	

may	have	difficulty	characterizing	it	or	accepting	it	as	the	population	of	interest.	From	this,	we	

also	learn	that,	provided	we	had	a	population	with	the	right	distribution	of	βi 's 	and	governed	

by	the	same	potential	outcome	equation,	the	treatment	would	produce	the	effect	in	at	least	

some	individuals	there.	

	

Section	2:	Using	the	results	of	randomized	controlled	trials	

2.1	Introduction	

Suppose	we	have	the	results	of	a	well-conducted	RCT.	We	have	estimated	an	average	treatment	

effect,	and	our	standard	error	gives	us	reason	to	believe	that	the	effect	did	not	come	about	by	

chance.	We	thus	have	good	warrant	that	the	treatment	causes	the	effect	in	our	sample	popula-

tion,	up	to	the	limits	of	statistical	inference.	What	are	such	findings	good	for?	How	should	we	

use	them?	

The	literature	in	economics,	as	indeed	in	medicine	and	in	social	policy,	has	paid	more	at-

tention	to	obtaining	results	than	to	whether	and	how	they	should	be	adapted	for	use,	often	as-
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suming	that	findings	can	be	used	“as	is.”	Much	effort	is	devoted	to	demonstrating	causality	and	

estimating	effect	sizes	in	study	populations,	both	in	empirical	work—more	and	better	RCTs,	or	

substitutes	for	RCTs,	such	as	instrumental	variables	or	regression	discontinuity	models—as	well	

as	in	theoretical	statistical	work—for	example	on	the	conditions	under	which	we	can	estimate	

an	average	treatment	effect,	or	a	local	average	treatment	effect,	and	what	these	estimates	

mean.	There	is	less	theoretical	or	empirical	work	to	guide	us	how	and	for	what	purposes	to	use	

the	findings	of	RCTs,	such	as	the	conditions	under	which	the	same	results	hold	outside	of	the	

original	settings,	how	they	might	be	adapted	for	use	elsewhere,	or	how	they	might	be	used	for	

formulating,	testing,	understanding,	or	probing	hypotheses	beyond	the	immediate	relation	be-

tween	the	treatment	and	the	outcome	investigated	in	the	study.	

Yet	it	cannot	be	that	knowing	how	to	use	results	is	less	important	than	knowing	how	to	

demonstrate	them.	Any	chain	of	evidence	is	only	as	strong	as	it	weakest	link,	so	that	a	rigorously	

established	effect	whose	applicability	is	justified	by	a	loose	declaration	of	simile	warrants	little	

more	than	an	estimate	that	was	plucked	out	of	thin	air.	If	trials	are	to	be	useful,	we	need	paths	

to	their	use	that	are	as	carefully	constructed	as	are	the	trials	themselves.	

	 It	is	sometimes	assumed	that	a	parameter,	once	well	established,	is	invariant	across	set-

tings.	The	parameter	may	be	difficult	to	estimate,	because	of	selection	or	other	issues,	and	it	

may	be	that	only	a	well-conducted	RCT	can	provide	a	credible	estimate	of	it.	If	so,	internal	validi-

ty	is	all	that	is	required,	and	debate	about	using	the	results	becomes	a	debate	about	the	conduct	

of	the	study.	The	argument	for	the	“primacy	of	internal	validity,”	Shadish,	Cook,	and	Campbell	

(2002),	is	reasonable	as	a	warning	that	bad	RCTs	are	unlikely	to	generalize,	but	it	is	sometimes	

incorrectly	taken	to	imply	that	results	of	an	internally	valid	trial	will	automatically	or	often	apply	

‘as	is’	elsewhere,	or	that	this	is	the	default	assumption	failing	arguments	to	the	contrary.	An	in-

variance	argument	is	often	made	in	medicine,	where	it	is	sometimes	plausible	that	a	particular	

procedure	or	drug	works	the	same	way	everywhere,	though	see	Horton	(2000)	for	a	strong	dis-

sent	and	Rothwell	(2005)	for	examples	on	both	sides	of	the	question.	We	should	also	note	the	

recent	movement	to	ensure	that	testing	of	drugs	includes	women	and	minorities	because	mem-

bers	of	those	groups	suppose	that	the	results	of	trials	on	mostly	healthy	young	white	males	do	

not	apply	to	them.		

2.2	Using	results,	transportability,	and	external	validity	

Suppose	a	trial	has	established	a	result	in	a	specific	setting,	and	we	are	interested	in	using	the	

result	outside	the	original	context.		If	“the	same”	result	holds	elsewhere,	we	say	we	have	exter-
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nal	validity,	otherwise	not.	External	validity	may	refer	just	to	the	transportability	of	the	causal	

connection,	or	go	further	and	require	replication	of	the	magnitude	of	the	average	treatment	

effect.	Either	way,	the	result	holds—everywhere,	or	widely,	or	in	some	specific	elsewhere—or	it	

does	not.		

This	binary	concept	of	external	validity	is	often	unhelpful;	it	both	overstates	and	under-

states	the	value	of	the	results	from	an	RCT.	It	directs	us	toward	simple	extrapolation—whether	

the	same	result	will	hold	elsewhere—or	simple	generalization—whether	it	holds	universally	or	

at	least	widely—and	away	from	possibly	more	complex	but	more	useful	applications	of	the	evi-

dence.	Just	as	internal	validity	says	nothing	about	whether	or	not	a	trial	result	will	hold	else-

where,	the	failure	of	external	validity	interpreted	as	simple	generalization	or	extrapolation	says	

little	about	the	value	of	the	trial.		

First,	there	are	several	uses	of	RCTs	that	do	not	require	transportability	beyond	the	orig-

inal	context;	we	discuss	these	in	the	next	subsection.	Second,	there	are	often	good	reasons	to	

expect	that	the	results	from	a	well-conducted,	informative,	and	potentially	useful	RCT	will	not	

apply	elsewhere	in	any	simple	way.	Even	successful	replication	by	itself	tells	us	little	either	for	or	

against	simple	generalization	or	extrapolation.	Without	further	understanding	and	analysis,	

even	multiple	replications	cannot	provide	much	support	for,	let	alone	guarantee,	the	conclusion	

that	the	next	will	work	in	the	same	way.	Nor	do	failures	of	replication	make	the	original	result	

useless.	We	can	often	learn	much	from	coming	to	understand	why	replication	failed	and	use	

that	knowledge	to	make	appropriate	use	of	the	original	findings,	not	by	expecting	replication,	

but	by	looking	for	how	the	factors	that	caused	the	original	result	might	be	expected	to	operate	

differently	in	different	settings.	Third,	and	particularly	important	for	scientific	progress,	the	RCT	

result	can	be	incorporated	into	a	network	of	evidence	and	hypotheses	that	test	or	explore	

claims	that	look	very	different	from	the	results	reported	from	the	RCT.	We	shall	give	examples	

below	of	extremely	useful	RCTs	that	are	not	externally	valid	in	the	(usual)	sense	that	their	re-

sults	do	not	hold	elsewhere,	whether	in	a	specific	target	setting	or	in	the	more	sweeping	sense	

of	holding	everywhere.	

Bertrand	Russell’s	chicken	provides	an	excellent	example	of	the	limitations	to	straight-

forward	extrapolation	from	repeated	successful	replication.	The	bird	infers,	based	on	multiply	

repeated	evidence,	that	when	the	farmer	comes	in	the	morning,	he	feeds	her.	The	inference	

serves	her	well	until	Christmas	morning,	when	he	wrings	her	neck	and	serves	her	for	Christmas	

dinner.	Of	course,	our	chicken	did	not	base	her	inference	on	an	RCT.	But	had	we	constructed	
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one	for	her,	we	would	have	obtained	exactly	the	same	result	that	she	did.	Her	problem	was	not	

her	methodology,	but	rather	that	she	was	studying	surface	relations,	and	that	she	did	not	un-

derstand	the	social	and	economic	structure	that	gave	rise	to	the	causal	relations	that	she	ob-

served.	So	she	did	not	know	how	widely	or	how	long	they	would	obtain.	Russell	notes,	“more	

refined	views	as	to	the	uniformity	of	nature	would	have	been	useful	to	the	chicken”	(1912,	p.	

44).	We	often	act	as	if	the	methods	of	investigation	that	served	the	chicken	so	badly	will	do	per-

fectly	well	for	us.		

Establishing	causality	does	nothing	in	and	of	itself	to	guarantee	generalizability.	Nor	

does	the	ability	of	an	ideal	RCT	to	eliminate	bias	from	selection	or	from	omitted	variables	mean	

that	the	resulting	ATE	will	apply	anywhere	else.		The	issue	is	worth	mentioning	only	because	of	

the	enormous	weight	that	is	currently	attached	in	economics	to	the	discovery	and	labeling	of	

causal	relations,	a	weight	that	is	hard	to	justify	for	effects	that	may	have	only	local	applicability,	

what	might	(perhaps	provocatively)	be	labeled	‘anecdotal	causality’.	The	operation	of	a	cause	

generally	requires	the	presence	of	support	or	helping	factors,	without	which	a	cause	that	pro-

duces	the	targeted	effect	in	one	place,	even	though	it	may	be	present	and	have	the	capacity	to	

operate	elsewhere,	will	remain	latent	and	inoperative.	What	Mackie	(1974)	called	INUS	causality	

(Insufficient	but	Non-redundant	parts	of	a	condition	that	is	itself	Unnecessary	but	Sufficient	for	a	

contribution	to	the	outcome)	is	often	the	kind	of	causality	we	see;	a	standard	example	is	a	

house	burning	down	because	the	television	was	left	on,	although	televisions	do	not	operate	in	

this	way	without	helping	factors,	such	as	wiring	faults,	the	presence	of	tinder,	and	so	on.	This	is	

standard	fare	in	epidemiology,	which	uses	the	term	“causal	pie”	to	refer	to	the	case	where	a	set	

of	causes	are	jointly	but	not	separately	sufficient	for	an	effect.	If	we	rewrite	(3)	in	the	form	

	
  
Yi = βiTi + γ j xij = θk wik
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∑ 		 (6)	

where	 θk controls	how	 wik 	affects	individual	I’s	treatment	effect	  βi . 	The	“helping”	or	“support”	

factors	for	the	treatment	are	represented	by	the	interactive	variables	  wik , among	which	may	be	

included	some	x’s.	Since	the	ATE	is	the	average	of	the	  βi 's ,	two	populations	will	have	the	same	

ATE	only	if,	except	by	accident,	they	have	the	same	average	for	the	support	factors	necessary	

for	the	treatment	to	work.	These	are	however	just	the	kind	of	factors	that	are	likely	to	be	differ-

ently	distributed	in	different	populations,	and	indeed	we	do	generally	find	different	ATEs	in	dif-
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ferent	development	(and	other	social	policy)	RCTs	in	different	places	even	in	the	cases	where	

(unusually)	they	all	point	in	the	same	direction.	

Causal	processes	often	require	highly	specialized	economic,	cultural,	or	social	structures	

to	enable	them	to	work.	Consider	the	Rube	Goldberg	machine	that	is	rigged	up	so	that	flying	a	

kite	sharpens	a	pencil,	Cartwright	and	Hardie	(2012,	77),	or	another	where	a	long	chain	of	ropes	

and	pulleys	causes	the	insertion	of	food	into	the	mouth	to	activate	a	face-wiping	napkin.	These	

are	causal	machines,	but	they	are	specially	constructed	to	give	a	kind	of	causality	that	operates	

extremely	locally	and	has	no	general	applicability.	The	underlying	structure	affords	a	very	specif-

ic	form	of	(6)	that	will	not	describe	causal	processes	elsewhere.		Neither	the	same	ATE	nor	the	

same	qualitative	causal	relations	can	be	expected	to	hold	where	the	specific	form	for	(6)	is	dif-

ferent.		

Indeed,	we	continually	attempt	to	design	systems	that	will	generate	causal	relations	

that	we	like	and	that	will	rule	out	causal	relations	that	we	do	not	like.	Healthcare	systems	are	

designed	to	prevent	nurses	and	doctors	making	errors;	cars	are	designed	so	that	drivers	cannot	

start	them	in	reverse;	work	schedules	for	pilots	are	designed	so	they	do	not	fly	too	many	con-

secutive	hours	without	rest	because	alertness	and	performance	are	compromised.	

As	in	the	Rube	Goldberg	machines	and	in	the	design	of	cars	and	work	schedules,	the	

economic	structure	and	equilibrium	may	differ	in	ways	that	support	different	kinds	of	causal	

relations	and	thus	render	a	trial	in	one	setting	useless	in	another.	For	example,	a	trial	that	relies	

on	providing	incentives	for	personal	promotion	is	of	no	use	in	a	state	in	which	a	political	system	

locks	people	into	their	social	and	economic	positions.	Conditional	cash	transfers	cannot	improve	

child	health	in	the	absence	of	functioning	clinics.	Policies	targeted	at	men	may	not	work	for	

women.	We	use	a	lever	to	toast	our	bread,	but	levers	only	operate	to	toast	bread	in	a	toaster;	

we	cannot	brown	toast	by	pressing	an	accelerator,	even	if	the	principle	of	the	lever	is	the	same	

in	both	a	toaster	and	a	car.	If	we	misunderstand	the	setting,	if	we	do	not	understand	why	the	

treatment	in	our	RCT	works,	we	run	the	same	risks	as	Russell’s	chicken.		

2.3	When	RCTs	speak	for	themselves:	no	transportability	required	

For	some	things	we	want	to	learn,	an	RCT	is	enough	by	itself.	An	RCT	may	disprove	a	general	

theoretical	proposition	to	which	it	provides	a	counterexample.	The	test	might	be	of	the	general	

proposition	itself	(a	simple	refutation	test),	or	of	some	consequence	of	it	that	is	susceptible	to	

testing	using	an	RCT	(a	complex	refutation	test).	Of	course,	counterexamples	are	often	chal-

lenged—for	example,	it	is	not	the	general	proposition	that	caused	the	rejection,	but	a	special	
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feature	of	the	trial—but	here	we	are	on	familiar	inferential	turf.	An	RCT	may	also	confirm	a	pre-

diction	of	a	theory,	and	although	this	does	not	confirm	the	theory,	it	is	evidence	in	its	favor,	es-

pecially	if	the	prediction	seems	inherently	unlikely	in	advance.	Once	again,	this	is	familiar	terri-

tory,	and	there	is	nothing	unique	about	an	RCT;	it	is	simply	one	among	many	possible	testing	

procedures.	Even	when	there	is	no	theory,	or	very	weak	theory,	an	RCT,	by	demonstrating	cau-

sality	in	some	population	can	be	thought	of	as	proof	of	concept,	that	the	treatment	is	capable	of	

working	somewhere.	This	is	one	of	the	arguments	for	the	importance	of	internal	validity.		

Another	case	where	no	transportation	is	called	for	is	when	an	RCT	is	used	for	evaluation,	

for	example	to	satisfy	donors	that	the	project	they	funded	actually	achieved	its	aims	in	the	pop-

ulation	in	which	it	was	conducted.	Even	so,	for	such	evaluations,	say	by	the	World	Bank,	to	be	

global	public	goods	requires	the	development	of	arguments	and	guidelines	that	justify	using	the	

results	in	some	way	elsewhere;	the	global	public	good	is	not	an	automatic	by-product	of	the	

Bank	fulfilling	its	fiduciary	responsibility.	When	the	components	of	treatments	change	across	

studies,	evaluations	need	not	lead	to	cumulative	knowledge.	Or	as	Heckman	et	al	(1999,	p.1934)	

note,	“the	data	produced	from	them	[social	experiments]	are	far	from	ideal	for	estimating	the	

structural	parameters	of	behavioral	models.	This	makes	it	difficult	to	generalize	findings	across	

experiments	or	to	use	experiments	to	identify	the	policy-invariant	structural	parameters	that	

are	required	for	econometric	policy	evaluation.”	Of	course,	when	we	ask	exactly	what	those	in-

variant	structural	parameters	are,	whether	they	exist,	and	how	they	should	be	modeled,	we	

open	up	major	fault	lines	in	modern	applied	economics.	For	example,	we	do	not	intend	to	en-

dorse	intertemporal	dynamic	models	of	behavior	as	the	only	way	of	recovering	the	parameters	

that	we	need.	We	also	recognize	that	the	usefulness	of	simple	price	theory	is	not	as	universally	

accepted	as	it	once	was.	But	the	point	remains	that	we	need	something,	some	regularity,	and	

that	the	something	needed	can	rarely	be	recovered	by	simply	generalizing	across	trials.		

A	third	non-problematic	and	important	use	of	an	RCT	is	when	the	parameter	of	interest	

is	the	average	treatment	effect	in	a	well-defined	population	from	which	the	sample	trial	popula-

tion—from	which	treatments	and	controls	are	randomly	assigned—is	itself	a	random	sample.	In	

this	case	the	sample	average	treatment	effect	(SATE)	is	an	unbiased	estimator	of	the	population	

average	treatment	effect	(PATE)	that,	by	assumption,	is	our	target,	see	Imbens	(2004)	for	these	

terms.	We	refer	to	this	as	the	“public	health”	case;	like	many	public	health	interventions,	the	

target	is	the	average,	“population	health,”	not	the	health	of	individuals.		One	major	(and	widely	

recognized)	danger	of	the	public-health-style	uses	of	RCTs	is	that	the	scaling	up	from	(even	a	
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random)	sample	to	the	population	will	not	go	through	in	any	simple	way	if	the	outcomes	of	indi-

viduals	or	groups	of	individuals	change	the	behavior	of	others—which	will	be	common	in	eco-

nomic	examples	but	perhaps	less	common	in	health.	There	is	also	an	issue	of	timing	if	the	results	

are	to	be	implemented	some	time	after	the	trial.		

In	economics,	a	‘public-health-style’	example	is	the	imposition	of	a	commodity	tax,	

where	the	total	tax	revenue	is	of	interest	and	we	do	not	care	who	pays	the	tax.	Indeed,	theory	

can	often	identify	a	specific,	well-defined	magnitude	whose	measurement	is	key	for	the	policy;	

see	Deaton	and	Ng	(1998)	for	an	example	of	what	Chetty	(2009)	calls	a	“sufficient”	statistic.	In	

this	case,	the	behavior	of	a	random	sample	of	individuals	might	well	provide	a	good	guide	to	the	

tax	revenue	that	can	be	expected.	Another	case	comes	from	work	on	poverty	programs	where	

the	interest	of	the	sponsors	is	in	the	consequences	for	the	budget	of	the	state	responsible	for	

the	program;	we	discuss	these	cases	at	the	end	of	this	Section.	Even	here,	it	is	easy	to	imagine	

behavioral	effects	coming	into	play	that	drive	a	wedge	between	the	trial	and	its	full	scale	im-

plementation,	for	example	if	compliance	is	higher	when	the	scheme	is	widely	publicized,	or	if	

government	agencies	implement	the	scheme	differently	from	trialists.		

2.4	Transporting	results	laterally	and	globally	

The	program	of	RCTs	in	development	economics,	as	in	other	areas	of	social	science,	has	the	

broader	goal	of	finding	out	“what	works.”	At	its	most	ambitious,	this	aims	for	universal	reach,	

and	the	development	literature	frequently	argues	that	“credible	impact	evaluations	are	global	

public	goods	in	the	sense	that	they	can	offer	reliable	guidance	to	international	organizations,	

governments,	donors,	and	nongovernmental	organizations	(NGOs)	beyond	national	borders,”	

Kremer	and	Duflo	(2008,	p.	93).	Sometimes	the	results	of	a	single	RCT	are	advocated	as	having	

wide	applicability,	with	especially	strong	endorsement	when	there	is	at	least	one	replication.		

For	example,	Kremer	and	Holla	(2009)	use	a	Kenyan	trial	as	the	basis	for	a	blanket	statement	

without	context	restriction,	“Provision	of	free	school	uniforms,	for	example,	leads	to	10%-15%	

reductions	in	teen	pregnancy	and	drop	out	rates.”	Kremer	and	Duflo	(2008),	writing	about	an-

other	trial,	are	more	cautious,	citing	two	evaluations,	and	restricting	themselves	to	India:	“One	

can	be	relatively	confident	about	recommending	the	scaling-up	of	this	program,	at	least	in	India,	

on	the	basis	of	these	estimates,	since	the	program	was	continued	for	a	period	of	time,	was	eval-

uated	in	two	different	contexts,	and	has	shown	its	ability	to	be	rolled	out	on	a	large	scale.”	

Of	course,	the	problem	of	generalization	extends	beyond	RCTs,	to	both	“fully	con-

trolled”	laboratory	experiments	and	to	most	non-experimental	findings.	For	example,	ever	since	
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Alfred	Marshall	thought	of	it	while	sunbathing,	economists	have	used	the	concept	of	an	elastici-

ty—as	in	the	income	elasticity	of	the	demand	for	food,	or	the	price	elasticity	of	the	supply	of	

cotton—and	have	transported	elasticities—which	are	conveniently	dimensionless—from	one	

context	to	another,	as	numerical	estimates,	or	in	ranges,	such	as	high,	medium,	or	low.	Articles	

that	collect	such	estimates	are	widely	cited	even	though,	as	has	long	been	known,	the	invari-

ance	of	elasticities	is	not	guaranteed	in	practice	and	is	sometimes	inconsistent	with	choice	theo-

ry.	Our	argument	here	is	that	evidence	from	RCTs,	like	evidence	on	elasticities,	is	not	automati-

cally	simply	generalizable,	and	that	its	internal	validity,	when	it	exists,	does	not	provide	it	with	

any	unique	invariance	across	context.	We	shall	also	argue	that	specific	features	of	RCTs,	such	as	

their	freedom	from	parametric	assumptions,	although	advantageous	in	estimation,	can	be	a	se-

rious	handicap	in	use.		

Most	advocates	of	RCTs	understand	that	“what	works”	needs	to	be	qualified	to	“what	

works	under	which	circumstances,”	and	try	to	say	something	about	what	those	circumstances	

might	be,	for	example,	by	replicating	RCTs	in	different	places,	and	thinking	intelligently	about	

the	differences	in	outcomes	when	they	find	them.	Sometimes	this	is	done	in	a	systematic	way,	

for	example	by	having	multiple	treatments	within	the	same	trial	so	that	it	is	possible	to	estimate	

a	“response	surface,”	that	links	outcomes	to	various	combinations	of	treatments,	see	Greenberg	

and	Schroder	(2004)	or	Shadish	et	al	(2002).	For	example,	the	RAND	health	experiment	had	mul-

tiple	treatments,	allowing	investigation,	not	only	of	whether	health	insurance	increased	expend-

itures,	but	how	much	it	did	so	under	different	circumstances.	Some	of	the	negative	income	tax	

experiments	(NITs)	in	the	1960s	and	1970s	were	designed	to	estimate	response	surfaces,	with	

the	number	of	treatments	and	controls	in	each	arm	optimized	to	maximize	precision	of	estimat-

ed	response	functions	subject	to	an	overall	cost	limit,	Conlisk	(1973).	Experiments	on	time-of-

day	pricing	for	electricity	had	a	similar	structure,	see	Aigner	(1985).	

The	MDRC	experiments	have	also	been	analyzed	across	cities	in	an	effort	to	link	city	fea-

tures	to	the	results	of	the	RCTs	within	them,	Bloom,	Hill,	and	Riccio	(2005).	Unlike	the	RAND	and	

NIT	examples,	these	are	ex	post	analyses	of	completed	trials;	the	same	is	true	of	Vivalt	(2015)	

who	assembles	evidence	on	a	large	number	of	trials,	and	finds,	for	the	collection	of	trials	she	

studied,	that	development-related	RCTs	run	by	government	agencies	typically	find	smaller	

(standardized)	effect	sizes	than	RCTs	run	by	academics	or	by	NGOs.	Bold	et	al	(2013),	who	ran	

parallel	RCTs	on	an	intervention	implemented	either	by	an	NGO	or	by	the	government	of	Kenya,	

found	similar	results	there.	Note	that	these	analyses	have	a	different	purpose	from	those	meta-
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analyses	that	assume	that	different	trials	estimate	the	same	parameter	up	to	noise	and	average	

in	order	to	increase	precision.	

Although	there	are	issues	with	all	of	these	methods	of	investigating	differences	across	

trials,	without	some	discipline	it	is	too	easy	to	come	up	with	“just-so”	or	fairy	stories	that	ac-

count	for	almost	any	differences.	We	risk	a	procedure	that,	if	a	result	is	replicated	in	full	or	in	

part	in	at	least	two	places,	puts	that	treatment	into	the	“it	works”	box	and,	if	the	result	does	not	

replicate,	causally	interprets	the	difference	in	a	way	that	allows	at	least	some	of	the	findings	to	

survive.	

How	can	we	think	about	this	more	seriously?	How	can	we	do	better	than	simple	gener-

alization	and	simple	extrapolation?	Many	writers	have	emphasized	the	role	of	theory	in	trans-

porting	and	using	the	results	of	trials,	and	we	shall	discuss	this	further	in	the	next	subsection.	

But	statistical	approaches	are	also	widely	used;	these	are	designed	to	deal	with	the	possibility	

that	treatment	effects	vary	systematically	with	other	variables.	Referring	back	to	(6),	suppose	

that	the	βi 's ,	the	individual	treatment	effects,	are	functions	of	a	set	of	K	observable	or	unob-

servable	support	variables,	wik ,	and	that	the	non-vacuous	w’s	may	even	represent	different	fea-

tures	in	different	places.		It	is	then	clear	that,	provided	the	distribution	of	the	w	values	is	the	

same	in	the	new	circumstances	as	the	old,	then	the	ATE	in	the	original	trial	will	hold	in	the	new	

circumstances.	In	general,	of	course,	this	condition	will	not	hold,	nor	do	we	have	any	obvious	

way	of	checking	it	unless	we	know	what	the	support	factors	are	in	both	places.		

One	procedure	to	deal	with	interactions	is	post-experimental	stratification,	which	paral-

lels	post-survey	stratification	in	sample	surveys.	The	trial	is	broken	up	into	subgroups	that	have	

the	same	combination	of	known,	observable	w’s,	the	ATEs	within	each	of	the	subgroups	calcu-

lated,	and	then	reassembled	according	to	the	configuration	of	w’s	in	the	new	context.	For	ex-

ample,	if	the	treatment	effects	vary	with	age,	the	age-specific	ATEs	can	be	estimated,	and	the	

age	distribution	in	the	new	context	used	to	reweight	the	age-specific	ATEs	to	give	a	new,	overall,	

ATE.	This	can	be	used	to	estimate	the	ATE	in	a	new	context,	or	to	correct	estimates	to	the	par-

ent	population	when	the	trial	sample	is	not	a	random	sample	of	the	parent.	Of	course,	this	

method	will	only	work	in	special	cases;	for	example,	if	we	only	know	some	of	the	w’s,	there	is	no	

reason	to	suppose	that	reweighting	for	those	alone	will	give	a	useful	correction.	

Other	methods	also	work	when	there	are	too	many	w’s	for	stratification,	for	example	by	

estimating	the	probability	of	each	observation	in	the	population	being	included	in	the	trial	sam-

ple	as	a	function	of	the	w’s,	then	weighting	each	observation	by	the	inverse	of	these	propensity	
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scores.	A	good	reference	for	these	methods	is	Stuart	et	al	(2011),	or	in	economics,	Angrist	

(2004)	and	Hotz,	Imbens,	and	Mortimer	(2005).						

There	are	yet	further	reasons	why	these	methods	do	not	always	work.	As	with	any	form	

of	reweighting,	the	variables	used	to	construct	the	weights	must	be	present	in	both	the	original	

and	new	context.	If	treatment	effects	vary	by	sex,	we	cannot	predict	the	outcomes	for	men	us-

ing	a	trial	sample	that	is	entirely	female.	If	we	are	to	carry	a	result	forward	in	time,	we	may	not	

be	able	to	extrapolate	from	a	period	of	low	inflation	to	a	period	of	high	inflation;	as	Hotz	et	al	

(2005)	note,	it	will	typically	be	necessary	to	rule	out	such	“macro”	effects,	whether	over	time,	or	

over	locations.	It	also	depends	on	assuming	that	the	same	governing	equation	(6)	covers	the	

trial	and	the	target	population.	If	they	differ	not	only	by	what	causal	factors	are	present	in	what	

proportions	but	also	in	how	(if	at	all)	the	causes	contribute	to	the	effects,	re-weighting	the	effect	

sizes	that	occur	in	trial	sub-populations	will	not	produce	good	predictions	about	target	popula-

tion	outcomes.		

It	should	be	clear	from	this	that	reweighting	works	only	when	the	observable	factors	

used	for	reweighting	include	all	and	only	genuine	interactive	causes;	we	need	data	on	all	the	

relevant	interactive	factors.	But	as	Muller	(2015)	notes,	this	takes	us	back	to	the	situation	that	

RCTs	are	designed	to	avoid,	where	we	need	to	start	from	a	complete	and	correct	specification	of	

the	causal	structure.	RCTs	can	avoid	this	in	estimation—which	is	one	of	their	strengths,	support-

ing	their	credibility—but	the	benefit	vanishes	as	soon	as	we	try	to	carry	their	results	to	a	new	

context.		

Pearl	and	Bareinboim	(2014)	use	Pearl’s	do–calculus	to	provide	a	fuller	formal	analysis	

for	transportability	of	causal	empirical	findings	across	populations.	They	define	transportability	

as	“a	license	to	transfer	causal	effects	learned	in	RCTs	to	a	new	population,	in	which	only	obser-

vational	studies	can	be	conducted,”	Pearl	and	Bareinboim	(2015,	p.	1).	They	consider	both	quali-

tative	causal	relations,	which	they	represent	in	directed	acyclic	graphs,	and	probabilistic	facts,	

such	as	the	conditional	probability	of	the	outcome	on	a	treatment	conditional	on	some	third	

factor.	They	then	provide	theorems	about	what	the	relationship	between	the	causal	and	proba-

bilistic	facts	in	two	populations	must	be	if	it	is	to	be	possible	to	infer	a	particular	causal	fact,	

such	as	the	ATE,	about	population	2	from	causal	and	probabilistic	information	about	population	

1	coupled	with	purely	probabilistic	information	about	population	2.		Not	surprisingly,	for	many	

things	we	should	like	to	know	about	population	2,	knowledge	of	even	the	full	structure	on	popu-

lation	1	will	not	suffice.	Inferences	to	facts	about	a	new	population	require	not	only	that	the	
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facts	we	suppose	about	population	1—like	an	ATE—are	well	grounded,	that	the	RCT	was	well	

conducted,	that	the	statistical	inference	is	sound—but	that	we	have	equally	good	grounding	for	

other	assumptions	we	need	about	the	relation	between	the	two	populations.	For	example,	using	

the	result	described	above	for	directly	transporting	the	ATE	from	a	trial	population	to	some	oth-

er—simple	extrapolation—we	need	good	grounds	to	suppose	both	that	the	average	of	the	net	

effect	of	the	interactive	factors	is	the	same	in	both	populations	and	also	that	the	same	govern-

ing	equation	describes	both	populations.	

This	discussion	leads	to	a	number	of	points.	First,	we	cannot	get	to	general	claims	by	

simple	generalization;	there	is	no	warrant	for	the	convenient	assumption	that	the	ATE	estimated	

in	a	specific	RCT	is	an	invariant	parameter.	We	need	to	think	through	the	causal	chain	that	has	

generated	the	RCT	result,	and	the	underlying	structures	that	support	this	causal	chain,	whether	

that	causal	chain	might	operate	in	a	new	setting	and	how	it	would	do	so	with	different	joint	dis-

tributions	of	the	causal	variables;	we	need	to	know	why	and	whether	that	why	will	apply	else-

where.	While	it	is	true	that	there	exist	general	causal	claims—the	force	of	gravity,	or	that	people	

respond	to	incentives—they	use	relatively	abstract	concepts	and	operate	at	a	much	higher	level	

than	the	claims	that	can	be	reasonably	inferred	from	a	typical	RCT,	and	cannot,	by	themselves,	

guarantee	the	outcomes	that	we	are	considering	here.	That	transportation	is	far	from	automatic	

also	tells	us	why	(even	ideal)	RCTs	of	similar	interventions	can	be	expected	to	give	different	an-

swers	in	different	settings.	Such	differences	do	not	necessarily	reflect	methodological	failings	

and	will	hold	across	perfectly	executed	RCTs	just	as	they	do	across	observational	studies.		

	Second,	thoughtful	pre-experimental	stratification	in	RCTs	is	likely	to	be	valuable,	or	

failing	that,	subgroup	analysis,	because	it	can	provide	information	that	may	be	useful	for	gener-

alization	or	transportation.		For	example,	Kremer	and	Holla	(2009)	note	that,	in	their	trials,	

school	attendance	is	surprisingly	sensitive	to	small	subsidies,	which	they	suggest	is	because	

there	are	a	large	number	of	students	and	parents	who	are	on	the	(financial)	margin	between	

attending	and	not	attending	school;	if	this	is	indeed	the	mechanism	for	their	results,	a	good	var-

iable	for	stratification	would	be	the	fraction	of	people	near	the	relevant	cutoff.	We	also	need	to	

know	that	the	same	mechanism	works	in	any	new	setting	where	we	consider	using	small	subsi-

dies	to	increase	school	attendance.	

Third,	we	need	to	be	explicit	about	causal	structure,	even	if	that	means	more	model	

building	and	more—or	different—assumptions	than	advocates	of	RCTs	are	often	comfortable	

with.	To	be	clear,	modeling	causal	structure	does	not	necessarily	commit	us	to	the	elaborate	and	
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often	incredible	assumptions	that	characterize	some	structural	modeling	in	economics,	but	

there	is	no	escape	from	thinking	about	the	way	things	work,	the	why	as	well	as	the	what.	

Fourth,	we	will	typically	need	to	know	more	than	the	results	of	the	RCT	itself,	for	exam-

ple	about	differences	in	social,	economic,	and	cultural	structures	and	about	the	joint	distribu-

tions	of	causal	variables,	knowledge	that	will	often	only	be	available	through	a	range	of	empiri-

cal	strategies	including	observational	studies.	We	will	also	need	to	be	able	to	characterize	the	

population	to	which	the	original	RCT	and	its	ATE	applied	because	how	the	population	is	de-

scribed	is	commonly	taken	to	be	some	indication	of	which	other	populations	the	results	are	like-

ly	to	be	exportable	to	and	which	not.	Many	medical	and	psychological	journals	are	explicit	about	

this.	For	instance,	the	rules	for	submission	recommended	by	the	International	Committee	of	

Medical	Journal	Editors,	ICMJE	(2015,	p14)	insist	that	article	abstracts	“Clearly	describe	the	se-

lection	of	observational	or	experimental	participants	(healthy	individuals	or	patients,	including	

controls),	including	eligibility	and	exclusion	criteria	and	a	description	of	the	source	population.”	

The	problems	of	characterizing	the	population	here	goes	beyond	those	we	faced	in	considering	

a	LATE.	An	RCT	is	conducted	on	a	population	of	specific	individuals.	The	results	obtained,	

whether	we	think	in	terms	of	an	ATE	or	in	terms	of	establishing	causality,	are	features	of	that	

population,	of	those	very	individuals	at	that	very	time,	not	any	other	population	with	any	differ-

ent	individuals	that	might,	for	example,	satisfy	one	of	the	infinite	set	of	descriptions	that	the	

trial	population	satisfies.	How	is	the	description	of	the	population	that	is	used	in	reporting	the	

results	to	be	chosen?	For	choose	we	must—the	alternative	to	describing	is	naming,	identifying	

each	individual	in	the	study	by	name,	which	is	cumbersome	and	unhelpful	and	often	unethical.			

This	same	issue	is	confronted	already	in	study	design.	Apart	from	special	cases,	like	post	

hoc	evaluation	for	payment-for-results,	we	are	not	especially	concerned	to	learn	about	the	very	

population	enrolled	in	the	trial.	Most	experiments	are,	and	should	be,	conducted	with	an	eye	to	

what	the	results	can	help	us	learn	about	other	populations.	This	cannot	be	done	without	signifi-

cant	substantial	assumptions	about	what	might	be	and	what	might	not	be	relevant	to	the	pro-

duction	of	the	outcome	studied.	(For	example,	the	ICMJE	guidelines	go	on	to	say:	“Because	the	

relevance	of	such	variables	as	age,	sex,	or	ethnicity	is	not	always	known	at	the	time	of	study	de-

sign,	researchers	should	aim	for	inclusion	of	representative	populations	into	all	study	types	and	

at	a	minimum	provide	descriptive	data	for	these	and	other	relevant	demographic	variables,”	

p14.)	So	both	intelligent	study	design	and	responsible	reporting	of	study	results	involve	substan-

tial	background	assumptions.	Of	course	this	is	true	for	all	studies,	not	just	RCTs.	But	RCTs	require	
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special	conditions	if	they	are	to	be	conducted	at	all	and	especially	if	they	are	to	be	conducted	

successfully—local	agreements,	compliant	subjects,	affordable	administrators,	people	compe-

tent	to	measure	and	record	outcomes	reliably,	a	setting	where	random	allocation	is	morally	and	

politically	acceptable,	etc.,	whereas	observational	data	are	often	more	readily	and	widely	avail-

able.	In	the	case	of	RCTs,	there	is	danger	that	these	kinds	of	considerations	have	too	much	ef-

fect.	This	is	especially	worrisome	where	the	features	the	study	population	should	have	are	not	

justified,	made	explicit,	or	subjected	to	serious	critical	review.		This	careful	description	of	the	

study	population	is	uncommon	in	economics,	whether	in	RCTs	or	many	observational	studies.		

The	need	for	observational	knowledge	is	one	of	many	reasons	why	it	is	counter-

productive	to	insist	that	RCTs	are	the	unique	gold	standard,	or	that	some	categories	of	evidence	

should	be	prioritized	over	others;	these	strategies	leave	us	helpless	in	using	RCTs	beyond	their	

original	context.	The	results	of	RCTs	must	be	integrated	with	other	knowledge,	including	the	

practical	wisdom	of	policymakers,	if	they	are	to	be	useable	outside	the	context	in	which	they	

were	constructed.	Contrary	to	much	practice	in	medicine	as	well	as	in	economics,	conflicts	be-

tween	RCTs	and	observational	results	need	to	be	explained,	for	example	by	reference	to	the	dif-

ferent	populations	in	each,	a	process	that	will	sometimes	yield	important	evidence,	including	on	

the	range	of	applicability	of	the	RCT	itself.	While	the	validity	of	the	RCT	will	sometimes	provide	

an	understanding	of	why	the	observational	study	found	a	different	answer,	there	is	no	basis	(or	

excuse)	for	the	common	practice	of	dismissing	the	observational	study	simply	because	it	was	

not	an	RCT	and	therefore	must	be	invalid.	It	is	a	basic	tenet	of	scientific	advance	that	new	find-

ings	must	be	able	to	explain	previous	results,	even	results	that	are	now	thought	to	be	invalid;	

methodological	prejudice	is	not	an	explanation.		

These	considerations	can	be	seen	in	practice	in	the	range	of	randomized	controlled	trials	

in	economics,	which	we	shall	explore	in	the	final	subsection	below.		

2.5	Using	theory	for	generalization	

Economists	have	been	combining	theory	and	randomized	controlled	trials	since	the	early	exper-

iments.	Orcutt	and	Orcutt	(1968)	laid	out	the	inspiration	for	the	income	tax	trials	using	a	simple,	

static	theory	of	labor	supply.	According	to	this,	people	choose	how	to	divide	their	time	between	

work	and	leisure	in	an	environment	in	which	they	receive	a	minimum	G	if	they	do	not	work,	and	

where	they	receive	an	additional	amount	 (1− t)w 	for	each	hour	they	work,	where	w	is	the	

wage	rate,	and	t	is	a	tax	rate.	The	trials	assigned	different	combinations	of	G	and	t	to	different	

trial	groups,	so	that	the	results	traced	out	the	labor	supply	function,	allowing	estimation	of	the	
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parameters	of	preferences,	which	could	then	be	used	in	a	wide	range	of	policy	calculations,	for	

example	to	raise	revenue	at	minimum	utility	loss	to	workers.		

	 Following	these	early	trials,	there	has	been	a	long	and	continuing	tradition	of	using	trial	

results,	together	with	the	baseline	data	collected	for	the	trial,	to	fit	structural	models	that	are	to	

be	used	more	generally.	Early	examples	include	Moffitt	(1979)	on	labor	supply	and	Wise	(1985)	

on	housing;	more	recent	examples	are	Heckman,	Pinto	and	Savelyev	(2013)	for	the	Perry	pre-

school	program.	Development	economics	examples	include	Attanasio,	Meghir	and	Santiago	

(2012),	Attanasio	et	al	(2015),	Todd	and	Wolpin	(2006)	and	Duflo,	Hanna	and	Ryan	(2012).		The-

se	structural	models	sometimes	require	formidable	auxiliary	assumptions	on	functional	forms	or	

the	distributions	of	unobservables,	which	makes	many	economists	reluctant	to	embrace	them,	

but	they	have	compensating	advantages,	including	the	ability	to	integrate	theory	and	evidence,	

to	make	out-of-sample	predictions,	and	to	analyze	welfare—which	always	requires	some	under-

standing	of	why	things	happen—and	the	use	of	RCT	evidence	allows	the	relaxation	of	at	least	

some	of	the	assumptions	that	are	needed	for	identification.	In	this	way,	the	structural	models	

borrow	credibility	from	the	RCTs	and	in	return	help	set	the	RCT	results	within	a	coherent	

framework.	Without	some	such	interpretation,	the	welfare	implications	of	RCT	results	can	be	

problematic;	knowing	how	people	in	general	(let	alone	just	people	in	the	trial	population,	which	

is	what,	as	we	keep	repeating,	the	trial	results	tell	us	about)	respond	to	some	policy	is	rarely	

enough	to	tell	whether	or	not	they	are	made	better	off.	What	works	is	not	equivalent	to	what	

should	be.	

	 In	many	papers,	Heckman	has	developed	ways	to	model	how	the	beliefs	and	interests	of	

participants	affect	their	participation	in,	behavior	during,	and	their	outcomes	in	trials,	for	exam-

ple	using	a	Roy	model	of	choice;	see	e.g.	Heckman	and	Smith	(1995),	and	more	recently	

Chassang,	Padró	I	Miguel,	and	Snowberg	(2012)	and	Chassang	et	al	(2015).	The	modeling	of	be-

liefs	and	behavior	allows	predictions	about	the	results	of	trials	that	differ	from	the	base	trial,	or	

where	the	risk	and	reward	structures	are	different.	Beyond	that,	and	in	line	with	a	running	

theme	of	this	Section,	thinking	about	how	to	handle	new	situations	can	be	incorporated	into	the	

design	of	the	original	trial	so	as	to	provide	the	information	needed	for	transportation.	

	 Light	touch	theory	can	do	much	to	extend	and	to	use	RCT	results.	In	both	the	RAND	

Health	Experiment	and	negative	income	tax	experiments,	an	immediate	issue	concerned	the	

difference	between	short	and	long-run	responses;	indeed,	differences	between	immediate	and	

ultimate	effects	occur	in	a	wide	range	of	RCTs.	Both	health	and	tax	RCTs	aimed	to	discover	what	
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would	happen	if	consumers/workers	were	permanently	faced	with	higher	or	lower	pric-

es/wages,	but	the	trials	could	only	run	for	a	limited	period.	A	temporarily	high	tax	rate	on	earn-

ings	was	effectively	a	“fire	sale”	on	leisure,	so	that	the	experiment	provided	an	opportunity	to	

take	a	vacation	and	make	up	the	earnings	later,	an	incentive	that	would	be	absent	in	a	perma-

nent	scheme.	How	do	we	get	from	the	short-run	responses	that	come	from	the	trial	to	the	long-

run	responses	that	we	want	to	know?	Metcalf	(1973)	and	Ashenfelter	(1978)	provided	answers	

for	the	income	tax	experiments,	as	did	Arrow	(1975)	for	the	Rand	Health	Experiment.		

	 Arrow’s	analysis	illustrates	how	to	use	both	structure	and	observational	data	to	

transport	and	adapt	results	from	one	setting	to	another.	He	models	the	health	experiment	as	a	

two-period	model,	in	which	the	price	of	medical	care	is	lowered	in	the	first	period	only,	and	

shows	how	to	derive	what	we	want,	which	is	the	response	in	the	first	period	if	prices	were	low-

ered	by	the	same	proportion	in	both	periods.	The	magnitude	that	we	want	is	S,	the	compen-

sated	price	derivative	of	medical	care	in	period	1	in	the	face	of	identical	increases	in	 p1 	and	 p2 	

in	both	periods	1	and	2,	and	this	is	equal	to s11 + s12 ,	the	sum	of	the	derivatives	of	period	1’s	

demand	with	respect	to	the	two	prices.	The	trial	gives	only	 s11 .	But	if	we	have	post-trial	data	on	

medical	services	for	both	treatments	and	controls,	we	can	infer	 s21 ,	the	effect	of	the	experi-

mental	price	manipulation	on	post-experimental	care.	Choice	theory,	in	the	form	of	Slutsky	

symmetry,	allows	Arrow	to	use	this	to	infer	 s12 	and	thus	S.	He	contrasts	this	with	Metcalf’s	al-

ternative	solution,	which	makes	different	assumptions—that	two	period	preferences	are	inter-

temporally	additive,	in	which	case	the	long-run	elasticity	can	be	obtained	from	knowledge	of	the	

income	elasticity	of	post-experimental	medical	care,	which	would	have	to	come	from	an	obser-

vational	analysis.	These	two	alternative	approaches	show	how	we	can	choose,	based	on	our	will-

ingness	to	make	assumptions	and	on	the	data	we	have,	a	suitable	combination	of	(elementary	

and	transparent)	theoretical	assumptions	and	observational	data	in	order	adapt	and	use	the	trial	

results.	Such	analysis	can	also	help	design	the	original	trial	by	clarifying	what	we	need	to	know	in	

order	to	be	able	to	use	the	results	of	a	temporary	treatment	to	estimate	the	permanent	effects	

that	we	need.	Ashenfelter	provides	a	third	solution,	noting	that	the	two	period	model	is	formally	

identical	to	a	two	person	model,	so	that	we	can	use	information	on	two-person	labor	supply	to	

tell	us	about	the	dynamics.	

	 Theory	can	often	allow	us	to	reclassify	new	or	unknown	situations	as	analogous	to	situa-

tions	where	we	already	have	background	knowledge.	One	frequently	useful	way	of	doing	this	is	
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when	the	new	policy	can	be	recast	as	equivalent	to	a	change	in	the	budget	constraint	that	re-

spondents	face.	The	consequences	of	a	new	policy	may	be	easier	to	predict	if	we	can	reduce	it	

to	equivalent	changes	in	income	and	prices,	whose	effects	are	often	well	understood	and	well	

studied.	Todd	and	Wolpin	(2008)	make	this	point	and	provide	examples.	In	the	labor	supply	

case,	an	increase	in	the	tax	rate	t	has	the	same	effect	as	a	decrease	in	the	wage	rate	w,	so	that	

we	can	rely	on	previous	literature	to	predict	what	will	happen	when	tax	rates	are	changed.	In	

the	case	of	Mexico’s	PROGRESA	conditional	cash	transfer	program,	Todd	and	Wolpin	note	that	

the	subsidies	paid	to	parents	if	their	children	go	to	school	can	be	thought	of	as	a	combination	of	

reduction	in	children’s	wage	rates	and	an	increase	in	parents’	income,	which	allows	them	to	

predict	the	results	of	the	conditional	cash	experiment	with	limited	additional	assumptions.	If	

this	works,	as	it	partially	does	in	their	analysis,	the	trial	helps	consolidate	previous	knowledge	

and	contributes	to	an	evolving	body	of	theory	and	empirical,	including	trial,	evidence.		

The	program	of	thinking	about	policy	changes	as	equivalent	to	price	and	income	chang-

es	has	a	long	history	in	economics;	much	of	rational	choice	theory	can	be	so	interpreted,	see	

Deaton	and	Muellbauer	(1980)	for	many	examples.	When	this	conversion	is	credible,	and	when	

a	trial	on	some	apparently	unrelated	topic	can	be	modeled	as	equivalent	to	a	change	in	prices	

and	incomes,	and	when	we	can	assume	that	people	in	different	settings	respond	relevantly	simi-

larly	to	changes	in	prices	and	incomes,	we	have	a	readymade	framework	for	incorporating	the	

trial	results	into	previous	knowledge,	as	well	as	for	extending	the	trial	results	and	using	them	

elsewhere.	Of	course,	all	depends	on	the	validity	and	credibility	of	the	theory;	people	may	not	in	

fact	think	of	a	tax	increase	as	a	decrease	in	the	price	of	leisure,	and	behavioral	economics	is	full	

of	examples	where	apparently	equivalent	stimuli	generate	non-equivalent	outcomes.	The	em-

brace	of	behavioral	economics	by	many	of	the	current	generation	of	trialists	may	account	for	

their	limited	willingness	to	use	conventional	choice	theory	in	this	way;	unfortunately,	behavioral	

economics	does	not	yet	offer	a	replacement	for	the	general	framework	of	choice	theory	that	is	

so	useful	in	this	regard.	

	 Theory	can	also	help	with	the	problem	we	raised	of	delineating	the	population	to	which	

the	trial	results	immediately	apply	and	for	thinking	about	moving	from	this	population	to	the	

population	of	interest.	Ashenfelter’s		(1978)	analysis	is	again	a	good	illustration	and	predates	

much	similar	work	in	later	literature.	The	income	tax	experiments	offered	participation	in	the	

trial	to	a	random	sample	of	the	population	of	interest.	Because	there	was	no	blinding	and	no	

compulsion,	people	who	were	randomized	into	the	treatment	group	were	free	to	choose	to	re-
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fuse	treatment.	As	in	many	subsequent	analyses,	Ashenfelter	supposes	that	people	choose	to	

participate	if	it	is	in	their	interest	to	do	so,	depending	on	what	has	become	known	in	the	RCT	

and	Instrumental	Variables	literature	as	their	own	idiosyncratic	“gain.”	The	simple	labor	supply	

model	gives	an	approximate	condition:	if	the	treatment	increases	the	tax	rate	from	 t0 	to	 t1 	with	

an	offsetting	increase	in	G,	then	an	individual	assigned	to	the	experimental	group	will	decline	to	

participate	if		

	 (t1 − t0 )w0h0 +
1
2
s00 (t1 − t0 ) >G1 −G0 			 (7)	

where	subscript	1	refers	to	the	treatment	situation,	0	to	the	control,	h0 	is	hours	worked,	and	

s00 	is	the	(negative)	utility-constant	response	of	hours	worked	to	the	tax	rate.	If	there	is	no	sub-

stitution,	the	second	term	on	the	left-hand	side	is	zero,	and	people	will	accept	treatment	if	the	

increase	in	G	more	than	makes	up	for	the	increases	in	taxes	payable,	the	“breakeven”	condition.	

In	consequence,	those	with	higher	earnings	are	less	likely	to	accept	treatment.	Some	better-off	

people	with	high	substitution	effects	will	also	accept	treatment	if	the	opportunity	to	buy	more	

cheap	leisure	is	sufficient	enticement.	

	 The	selective	acceptance	of	treatment	limits	the	analyst’s	ability	to	learn	about	the	bet-

ter-off	or	low-substitution	people	who	decline	treatment	but	who	would	have	to	accept	it	if	the	

policy	were	actually	implemented.	Both	the	ITT	estimator	and	the	“as	treated”	estimator	that	

compares	the	treated	and	the	untreated	are	affected,	not	just	by	the	labor	supply	effects	that	

the	trial	is	designed	to	induce,	but	by	the	kind	of	selection	effects	that	randomization	is	de-

signed	to	eliminate.	Of	course,	the	analysis	that	leads	to	(3)	can	perhaps	help	us	say	something	

about	this	and	help	us	adjust	the	trial	estimates	back	to	what	we	would	like	to	know.	Yet	this	is	

no	easy	matter	because	selection	depends,	not	only	on	observables,	such	as	pre-experimental	

earnings	and	hours	worked,	but	on	(much	harder	to	observe)	labor	supply	responses	that	likely	

vary	across	individuals.	Paraphrasing	Ashenfelter,	we	cannot	estimate	the	effects	of	a	perma-

nent	compulsory	negative	income	tax	program	from	a	transitory	voluntary	trial	without	strong	

assumptions	or	additional	evidence.		

Much	of	the	modern	literature,	for	example	on	training	programs,	wrestles	with	the	is-

sue	of	exactly	who	is	represented	by	the	RCT	results,	see	again	Heckman,	Lalonde	and	Smith	

(1999).	When	people	are	allowed	to	reject	their	randomly	assigned	treatment	according	to	their	

own	(real	or	perceived)	individual	advantage,	we	have	come	a	long	way	away	from	the	random	

allocation	in	the	standard	conception	of	a	randomized	controlled	trial.	Moreover,	the	absence	of	
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blinding	is	common	in	social	and	economic	RCTs,	and	while	there	are	trials,	such	as	welfare	tri-

als,	that	effectively	compel	people	to	accept	their	assignments,	and	some	where	the	treatment	

is	generous	enough	to	do	so,	there	are	trials	where	subjects	have	much	freedom	and,	in	those	

cases,	it	is	less	than	obvious	to	us	what	role,	if	any,	randomization	plays	in	warranting	the	re-

sults.		

2.6	Scaling	up:	using	the	average	for	populations	

A	typical	RCT,	especially	in	the	development	context,	is	small-scale	and	local,	for	example	in	a	

few	schools,	clinics,	or	farms	in	a	particular	geographic,	cultural,	socio-economic	setting.	If	suc-

cessful	according	to	a	cost-effectiveness	criterion,	for	example,	it	is	a	candidate	for	scaling-up,	

applying	the	same	intervention	for	a	much	larger	area,	often	a	whole	country,	or	sometimes	

even	beyond,	as	when	some	treatment	is	considered	for	all	relevant	World	Bank	projects.	The	

fact	that	the	intervention	might	work	differently	at	scale	has	long	been	noted	in	the	economics	

literature,	e.g.	Garfinkel	and	Manski	(1992),	Heckman	(1992),	and	Moffitt	(1992),	and	is	recog-

nized	in	the	recent	review	by	Banerjee	and	Duflo	(2009).	We	want	here	to	emphasize	the	perva-

siveness	of	such	effects—that	failure	of	the	trial	results	to	replicate	at	a	larger	scale	is	likely	to	

be	the	rule	rather	than	the	exception—as	well	as	to	note	once	again	that,	as	in	failures	of	trans-

portability,	this	should	not	be	taken	as	an	argument	against	using	RCTs,	but	only	against	the	idea	

that	effects	at	scale	are	likely	to	be	the	same	as	in	the	trial.	Using	RCT	results	is	not	the	same	as	

assuming	the	same	results	holds	in	all	circumstances.	

	 An	example	of	what	are	often	called	general	equilibrium	effects	comes	from	agriculture.	

Suppose	an	RCT	demonstrates	that	in	the	study	population	a	new	way	of	using	fertilizer	or	insec-

ticide	had	a	substantial	positive	effect	on,	say,	cocoa	yields,	so	that	farmers	who	used	the	new	

methods	saw	increases	in	production	and	in	incomes	compared	to	those	in	the	control	group.	If	

the	procedure	is	scaled	up	to	the	whole	country,	or	to	all	cocoa	farmers	worldwide,	the	price	

will	drop,	and	if	the	demand	for	cocoa	is	price	inelastic—as	is	usually	thought	to	be	the	case,	at	

least	in	the	short	run—cocoa	farmers’	incomes	will	fall.	Indeed,	the	conventional	wisdom	for	

many	crops	is	that	farmers	do	best	when	the	harvest	is	small,	not	large.	Of	course,	these	consid-

erations	might	not	be	decisive	in	deciding	whether	or	not	to	promote	the	innovation,	and	there	

may	still	be	long	term	gains	if,	for	example,	some	farmers	find	something	better	to	do	than	

growing	cocoa.	But	the	basic	point	is	that	the	scaled-up	effect	in	this	case	is	opposite	in	sign	to	

the	trial	effect.	The	problem	here	is	not	with	the	trial	results,	which	can	be	usefully	incorporated	

into	a	more	comprehensive	market	model	that	incorporates	the	responses	estimated	by	the	
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trial.	The	problem	is	only	if	we	assume	that	the	aggregate	looks	like	the	individual.	That	other	

ingredients	of	the	aggregate	model	must	come	from	observational	studies	should	not	be	a	criti-

cism,	even	for	those	who	favor	RCTs;	it	is	simply	the	price	of	doing	serious	analysis.		

	 There	are	many	possible	interventions	that	alter	supply	or	demand	whose	effect,	in	ag-

gregate,	will	change	a	price	or	a	wage	that	is	held	constant	in	the	original	RCT.	Education	will	

change	the	supplies	of	skilled	versus	unskilled	labor,	with	implications	for	relative	wage	rates.	

Conditional	cash	transfers	increase	the	demand	for	(and	perhaps	supply	of)	schools	and	clinics,	

which	will	change	prices	or	waiting	lines,	or	both.	There	are	interactions	between	people	that	

will	operate	only	at	scale.	Giving	one	child	a	voucher	to	go	to	private	school	might	improve	her	

future,	but	doing	so	for	everyone	can	decrease	the	quality	of	education	for	those	children	who	

are	left	in	the	public	schools,	see	the	contrasting	studies	of	Angrist	et	al	(1999)	and	Hsieh	and	

Urquiola	(2002).	Educational	or	training	programs	may	benefit	those	who	are	treated,	but	harm	

those	left	behind;	if	the	control	group	is	selected	from	the	latter,	the	RCT	may	generate	a	posi-

tive	result	in	spite	of	hurting	some	and	helping	none;	Crépon	et	al	(2014)	recognize	the	issue	and	

show	how	to	adapt	an	RCT	to	deal	with	it.	

	 Scaling	up	can	also	disturb	the	political	equilibrium.	An	exploitative	government	may	not	

allow	the	mass	transfer	of	money	from	abroad	to	a	powerless	segment	of	the	population,	

though	it	may	permit	a	small-scale	RCT	of	cash	transfers.	Provision	of	healthcare	by	foreign	

NGOs	may	be	successful	in	trials,	but	have	unintended	negative	consequences	to	scale	because	

of	general	equilibrium	effects	on	the	supply	of	healthcare	personnel,	or	because	it	disturbs	the	

nature	of	the	contract	between	the	people	and	a	government	that	is	using	tax	revenue	to	pro-

vide	services.	In	India,	the	government	spends	large	sums	on	food	subsidies	through	a	system	

(the	PDS)	that	is	both	corrupt	and	inefficient,	with	much	of	the	grain	that	is	procured	failing	to	

find	its	way	to	the	intended	beneficiaries.	Localized	RCTs	on	whether	or	not	families	are	better	

off	with	cash	transfers	are	not	informative	about	how	politicians	would	change	the	amount	of	

the	transfer	if	faced	with	unanticipated	inflation,	and	at	least	as	important,	whether	the	gov-

ernment	could	cut	procurement	from	relatively	wealthy	and	politically	powerful	farmers.	With-

out	a	political	and	general	equilibrium	analysis,	it	is	impossible	to	think	about	the	effects	of	re-

placing	food	subsidies	with	cash	transfers,	see	e.g.	Basu	(2010).	

Even	in	medicine,	where	biological	interactions	between	people	are	less	common	than	

are	social	interactions	in	social	science,	interactions	can	be	important;	infectious	diseases	are	an	

example,	and	immunization	programs	affect	the	dynamics	of	disease	transmission	through	herd	
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immunity,	so	that	the	effects	on	an	individual	depend	on	how	many	others	are	vaccinated,	Fine	

and	Clarkson	(1986),	Manski	(2013,	p	52).	The	usual,	if	seldom	correct,	conception	of	an	RCT	in	

medicine	is	of	a	biological	process—for	example,	the	administration	of	aspirin	after	a	heart	at-

tack—where	the	effect	is	thought	to	be	similar	across	individuals,	and	where	there	are	no	inter-

actions.	Yet	even	here,	the	social	and	economic	setting	affects	how	drugs	are	actually	used	and	

the	same	issues	can	arise;	the	distinction	between	efficacy	and	effectiveness	in	clinical	trials	is	in	

part	recognition	of	the	fact.	

2.7	Drilling	down:	using	the	average	for	individuals	

Just	as	there	are	issues	with	scaling-up,	it	is	not	obvious	how	to	use	the	results	from	RCTs	at	the	

level	of	individual	units,	even	individual	units	that	were	actually	(or	potentially)	included	in	the	

trial.	A	well-conducted	RCT	delivers	an	average	treatment	effect	for	a	well-defined	population	

but,	in	general,	that	average	does	not	apply	to	everyone.	It	is	not	true,	for	example,	as	argued	in	

JAMA’s	“Users’	guide	to	the	medical	literature”	that	“if	the	patient	would	have	been	enrolled	in	

the	study	had	she	been	there—that	is	she	meets	all	of	the	inclusion	criteria	and	doesn’t	violate	

any	of	the	exclusion	criteria—there	is	little	question	that	the	results	are	applicable,”	Guyatt	et	al	

(1994).	Even	more	misleading	are	the	often-heard	statements	that	an	RCT	with	an	average	

treatment	effect	insignificantly	different	from	zero	has	shown	that	the	treatment	works	for	no	

one,	though	such	a	conclusion	would	be	better	supported	by	a	Fisher	randomization	test.		

These	issues	are	familiar	to	physicians	practicing	evidence-based	medicine	whose	guide-

lines	require	“integrating	individual	clinical	expertise	with	the	best	available	external	clinical	evi-

dence	from	systematic	research,”	Sackett	et	al	(1996).		Exactly	what	this	means	is	unclear;	phy-

sicians	know	much	more	about	their	patients	than	is	allowed	for	in	the	ATE	from	the	RCT	

(though,	once	again,	stratification	in	the	trial	is	likely	to	be	helpful)	and	they	often	have	intuitive	

expertise	from	long	practice	that	they	rely	on	to	help	them	identify	features	in	a	particular	pa-

tient	that	are	likely	to	affect	the	effectiveness	of	a	given	treatment	for	that	patient.	But	there	is	

an	odd	balance	being	struck	here.	These	judgments	are	deemed	admissible	in	dealing	with	the	

individual	patient,	at	least	for	discussion	with	the	patient	as	possible	considerations,	but	they	

don’t	add	up	to	evidence	to	be	made	publicly	available,	with	the	usual	cautions	about	credibility,	

by	the	standards	adopted	by	most	EBM	sites.		It	is	also	true	that	physicians	can	have	prejudices	

and	“knowledge”	that	might	be	anything	but.	Clearly,	there	are	situations	where	forcing	practi-

tioners	to	follow	the	average	will	do	better,	even	for	individual	patients,	and	others	where	the	

opposite	is	true,	see	Kahneman	and	Klein	(2009).		
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	 Whether	or	not	averages	are	useful	to	individuals	raises	the	same	issue	in	social	science	

research.	Imagine	two	schools,	St	Joseph’s	and	St.	Mary’s,	both	of	which	were	included	in	an	

RCT	of	a	classroom	innovation,	or	at	least	were	eligible	to	be	so.		The	innovation	is	successful	on	

average,	but	should	the	schools	adopt	it?	Should	St	Mary’s	be	influenced	by	a	previous	attempt	

in	St	Joseph’s	that	was	judged	a	failure?	Many	would	dismiss	this	experience	as	anecdotal	and	

ask	how	St	Joseph’s	could	have	known	that	it	was	a	failure	without	benefit	of	“rigorous”	evi-

dence.	Yet	if	St	Mary’s	is	like	St	Joseph’s,	with	a	similar	mix	of	pupils,	a	similar	curriculum,	and	

similar	academic	standing,	might	not	St	Joseph’s	experience	be	more	relevant	to	what	might	

happen	at	St	Mary’s	than	is	the	positive	average	from	the	RCT?	And	might	it	not	be	a	good	idea	

for	the	teachers	and	governors	of	St	Mary’s	to	go	to	St	Joseph’s	and	find	out	what	happened	and	

why?	They	may	be	able	to	observe	the	mechanism	of	the	failure,	if	such	it	was,	and	figure	out	

whether	the	same	problems	would	apply	for	them,	or	whether	they	might	be	able	to	adapt	the	

innovation	to	make	it	work	for	them,	perhaps	even	more	successfully	than	the	positive	average	

in	the	trial.		

Once	again,	these	questions	are	unlikely	to	be	simply	answered	in	practice;	but,	as	with	

transportability,	there	is	no	serious	alternative	to	trying.	Assuming	that	the	average	works	for	

you	will	often	be	wrong,	and	it	will	at	least	sometimes	be	possible	to	do	better.	As	in	the	medi-

cal	case,	the	advice	to	individual	schools	often	lacks	specificity.	For	example,	the	US	Institute	of	

Education	Sciences	has	provided	a	“user-friendly”	guide	to	practices	supported	by	rigorous	evi-

dence,	US	Department	of	Education	(2003).	The	advice,	which	is	very	similar	to	recommenda-

tions	in	development	economics,	is	that	the	intervention	be	demonstrated	effective	through	

well-designed	RCTs	in	more	than	one	site	of	implementation,	and	that	“the	trials	should	demon-

strate	the	intervention’s	effectiveness	in	school	settings	similar	to	yours”	(2003,	p.	17).	No	oper-

ational	definition	of	“similar”	is	provided.		

	 We	note	finally	that	these	caveats,	which	apply	to	individuals	(or	schools)	even	if	they	

were	in	the	trial,	provide	another	reason	why	the	concept	of	“external”	validity	is	unhelpful.	The	

real	issue	is	how	to	use	the	findings	of	a	trial	in	new	settings,	including	settings	included	in	the	

trial;	external	validity	in	the	sense	of	invariance	of	the	ATE	emphasizes	simple	replication,	which	

guarantees	nothing,	while	ignoring	the	possibility	that	lack	of	replication	can	be	a	key	to	under-

standing.	
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2.8	Examples	and	illustrations	from	economics	

Our	arguments	in	this	Section	should	not	be	controversial,	yet	we	believe	that	they	represent	an	

approach	that	is	different	from	most	current	practice.		To	document	this	and	to	fill	out	the	ar-

guments,	we	provide	some	examples.	While	these	are	occasionally	critical,	our	purpose	is	con-

structive;	indeed,	we	believe	that	misunderstandings	about	how	to	use	RCTs	have	artificially	

limited	their	usefulness,	as	well	as	alienated	some	who	would	otherwise	use	them.	

	 Conditional	cash	transfers	(CCTs)	are	interventions	that	have	been	tested	using	RCTs	

(and	other	RCT-like	methods)	and	are	often	cited	as	a	leading	example	of	how	an	evaluation	

with	strong	internal	validity	leads	to	a	rapid	spread	of	the	policy,	e.g.	Angrist	and	Pischke	(2010)	

among	many	others.	IThink	through	the	causal	chain	that	is	required	for	CCTs	to	be	successful:	

people	must	like	money,	they	must	like	(or	do	not	object	too	much)	to	their	children	being	edu-

cated	and	vaccinated,	there	must	exist	schools	and	clinics	that	are	close	enough	and	well	

enough	staffed	to	do	their	job,	and	the	government	or	agency	that	is	running	the	scheme	must	

care	about	the	wellbeing	of	families	and	their	children.	That	such	conditions	hold	in	a	wide	

range	of	(although	certainly	not	all)	countries	makes	it	unsurprising	that	CCTs	“work”	in	many	

replications,	though	they	certainly	will	not	work	in	places	where	the	schools	and	clinics	do	not	

exist,	Levy	(2001),	nor	in	places	where	people	strongly	oppose	education	or	vaccination.		

Similarly,	given	that	the	helping	factors	will	operate	with	different	strengths	and	effec-

tiveness	in	different	places,	it	is	also	not	surprising	that	the	size	of	the	ATE	differs	from	place	to	

place;	for	example,	Vivalt’s	AidGrade	website	lists	29	estimates	from	a	range	of	countries	of	the	

standardized	(divided	by	local	standard	deviation	of	the	outcome)	effects	of	conditional	cash	

transfers	on	school	attendance;	all	but	four	show	the	expected	positive	effect,	and	the	range	

runs	from	–8	to	+38	percentage	points.	Even	in	this	leading	case,	where	we	might	reasonably	

conclude	that	CCTs	“work”	in	getting	children	into	school,	it	would	be	hard	to	calculate	credible	

cost-effectiveness	numbers,	or	to	come	to	a	general	conclusion	about	whether	CCTs	are	more	or	

less	cost	effective	than	other	possible	policies.	Both	costs	and	effect	sizes	can	be	expected	to	

differ	in	new	settings,	just	as	they	have	in	observed	ones,	making	these	predictions	difficult.	

	 The	range	of	estimates	illustrates	that	the	simple	view	of	external	validity—that	the	ATE	

should	transport	from	one	place	to	another—is	not	well	defined.	AidGrade	uses	standardized	

measures	of	effect	size	divided	by	standard	deviation	of	outcome	at	baseline,	as	does	the	major	

multi-country	study	by	Banerjee	et	al	(2015),	But	we	might	prefer	measures	that	have	an	eco-

nomic	interpretation,	such	as	additional	months	of	schooling	per	$100	spent	(for	example	if	a	
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donor	is	trying	to	decide	where	to	spend,	see	below).	Nutrition	might	be	measured	by	height,	or	

by	the	log	of	height.	Even	if	the	ATE	by	one	measure	carries	across,	it	will	only	do	so	using	an-

other	measure	if	the	relationship	between	the	two	measures	is	the	same	in	both	situations.	This	

is	exactly	the	sort	of	thing	that	a	formal	analysis	of	transportability	forces	us	to	think	about.		

(Note	also	that	ATE	in	the	original	RCT	can	differ	depending	on	whether	the	outcome	is	meas-

ured	in	levels	or	in	logs;	the	two	ATEs	could	even	have	different	signs.)	

Deworming	is	surely	more	complicated	than	conditional	cash	transfers	though	not	be-

cause	anyone	disputes	the	desirability	of	removing	parasitical	worms	or	the	biological	efficacy	of	

the	medicines,	at	least	if	they	are	repeatedly	and	effectively	administered;	that	is	the	part	of	the	

causal	process	that	is	transportable	from	one	place	to	another.	Yet	nutritional	or	school	attend-

ance	outcomes	depend	on	reinfection	from	one	person	to	another—which	depends	on	local	

customs	about	defecation	(which	vary	from	place	to	place	and	are	subject	to	religious	and	cul-

tural	factors),	particularly	on	the	extent	of	open	defecation	and	the	density	of	population,	on	

whether	or	not	children	wear	shoes,	and	on	the	availability	and	use	of	public	and	private	sanita-

tion;	this	last	was	crucial	in	the	elimination	of	hookworm	in	the	southern	states	of	the	U.S.	ac-

cording	to	Stiles	(1939).	Temperature	may	also	be	important;	indeed,	such	“macro”	variables	are	

likely	to	be	important	in	a	wide	range	of	medical,	employment,	and	production	trials,	

Rosenzweig	and	Udry	(2016).	There	are	two	prominent	positive	studies	in	the	economics	litera-

ture,	one	in	Kenya,	Kremer	and	Miguel	(2000)	and	one	in	India,	Bobonis,	Miguel	and	Puri-

Sharma	(2006);	these	are	often	cited	as	examples	of	the	power	of	RCTs	to	come	up	with	the	

“right”	answer,	for	example	by	Karlan	and	Appel	(2008).	Yet	the	Cochrane	Collaboration	review	

of	deworming	and	schooling,	Taylor-Robinson	et	al	(2015),	which	reviews	one	trial	(from	India)	

covering	more	than	a	million	participants,	and	44	others	covering	67,672	participants,	including	

Kremer	and	Miguel	(2004),	conclude	that	there	is	“substantial	evidence”	that	deworming	shows	

no	benefit	in	nutritional	status,	hemoglobin,	cognition,	school	performance	or	death.	The	validi-

ty	of	this	meta-analysis	is	disputed	by	Croke	et	al	(2016).	A	replication,	Aiken	et	al	(2015)	and	re-

analysis	(using	different	methods)	of	Miguel	and	Kremer’s	original	data	by	Davey	et	al	(2015)	

concluded	that	the	study	“provided	some	evidence,	but	with	high	risk	of	bias,”	provoking	a	

lengthy	exchange,	Hicks	et	al	(2015)	and	Hargreaves	et	al	(2015).	Most	of	the	differences	in	re-

sults	come	from	different	methodological	choices,	themselves	largely	based	on	disciplinary	tra-

ditions,	rather	from	the	effects	of	mistakes	or	errors.	In	an	impressive	and	clear	reanalysis,	

Humphreys	(2015)	argues	that	one	puzzling	feature	of	Miguel	and	Kremer’s	results	is	the	ab-
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sence	of	any	clear	effect	of	deworming	on	health,	as	was	the	case	in	the	large	Indian	RCT.	Yet	

the	effects	of	deworming	on	education,	which	are	the	main	target	of	the	paper,	presumably	

work	through	health,	so	that	the	absence	of	health	effects—a	failure	of	expected	mediators—is	

a	puzzle,	see	also	Miguel,	Kremer	and	Hicks	(2015),	and	Ahuja	et	al	(2015).	Recall	too	our	earlier	

discussion	of	the	difficulty	of	interpreting	the	standard	errors	of	the	original	study	in	the	ab-

sence	of	randomization.	

It	is	not	our	purpose	here	to	try	to	adjudicate	these	competing	claims	but	rather	to	re-

late	this	work	to	our	general	argument.	First,	it	is	not	clear	that	there	is	a	right	answer	to	be	dis-

covered;	given	the	causal	chains	involved,	deworming	might	be	helpful	in	one	place	but	unhelp-

ful	in	another.	Yet	the	focus	of	the	debate	is	almost	entirely	on	internal	validity,	on	whether	the	

original	studies	were	correctly	done.	The	Cochrane	review,	in	line	with	this,	and	in	line	with	

much	meta-analysis	of	trials,	seems	to	suppose	that	there	is	a	single	effect	to	be	uncovered	that,	

once	established,	will	be	invariant	to	local	and	environmental	differences.		External	validity,	it	

seems,	is	implied	by	internal	validity.	Indeed,	Chalmers,	one	of	the	founders	of	the	Cochrane	

Collaboration,	has	explicitly	argued	(in	response	to	one	of	us)	that,	in	the	absence	of	strong	rea-

sons	to	the	contrary,	results	should	be	taken	as	applicable	everywhere,	Pettigrew	and	Chalmers	

(2011).		

Second,	the	debate	makes	it	clear	that	the	practice	of	RCTs	in	economic	development	

has	done	little	to	fulfill	the	original	promise	that	their	simplicity—how	hard	is	it	to	subtract	one	

mean	from	another?—would	dispose	of	the	methodological	and	econometric	disputes	that	

characterize	so	many	observational	studies	and	were	thought	to	be	one	of	their	main	flaws.	

While	RCTs	tend	to	take	some	contentious	issues	of	identification	off	the	table,	they	leave	much	

to	be	disputed,	including	the	handling	of	factors	that	interact	with	treatment	effects,	the	appro-

priate	level	of	randomization,	the	calculation	of	standard	errors,	the	choice	of	outcome	meas-

ure,	the	inclusion	criteria	for	the	sample,	placebo	and	Hawthorne	effects,	and	much	more.	The	

claim	that	RCTs	cut	through	the	usual	econometric	disputes	to	deliver	to	policymakers	a	simple,	

convincing,	and	easily	understood	answer	is	simply	false.	The	deworming	debates	are	perhaps	

the	leading	illustration.	

Much	of	the	development	literature,	like	the	medical	literature,	works	with	the	view	of	

external	validity	that,	unless	there	is	evidence	to	the	contrary,	the	direction	and	size	of	treat-

ment	effects	can	be	transported	from	one	place	to	another.	The	J-PAL	website	reports	its	find-

ings	under	a	general	head	of	policy	relevance,	subdivided	by	a	selection	of	topics.	Under	each	
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topic,	there	is	a	list	of	relevant	RCTs	from	a	range	of	different	settings	around	the	world.	These	

are	conveniently	converted	into	a	common	cost-effectiveness	measure	so	that,	for	example,	

under	‘education’,	subhead	‘student	participation’,	there	are	four	studies	from	Africa:	on	in-

forming	parents	about	the	returns	to	education	in	Madagascar,	on	deworming,	on	school	uni-

forms,	and	on	merit	scholarships,	all	from	Kenya.	The	units	of	measurement	are	additional	years	

of	student	education	per	$100,	and	among	these	four	studies,	the	average	effect	sizes	of	spend-

ing	$100	are	20.7	years,	13.9	years,	0.71	years	and	0.27	years	respectively.	(Note	that	this	is	a	

different—and	superior—standardization	from	the	effect	size	standardization	discussed	above.)	

What	can	we	conclude	from	such	comparisons?	For	a	philanthropic	donor	interested	in	

education,	and	if	marginal	and	average	effects	are	the	same,	they	might	indicate	that	the	best	

place	to	devote	a	marginal	dollar	is	in	Madagascar,	where	it	would	be	used	to	inform	parents	

about	the	value	of	education.	This	is	certainly	useful,	but	it	is	not	as	useful	as	statements	that	

information	or	deworming	programs	are	everywhere	more	cost-effective	than	programs	involv-

ing	school	uniforms	or	scholarships,	or	if	not	everywhere,	at	least	over	some	domain,	and	it	is	

these	second	kinds	of	comparison	that	would	genuinely	fulfill	the	promise	of	“finding	out	what	

works.”		But	such	comparisons	only	make	sense	if	we	can	transport	the	results	from	one	place	to	

another,	if	the	Kenyan	results	also	hold	in	Madagascar,	Mali,	or	Namibia,	or	some	other	list	of	

African	or	non-African	places.	J-PAL’s	manual	for	cost-effectiveness,	Dhaliwal	et	al	(2012)	ex-

plains	in	(entirely	appropriate)	detail	how	to	handle	variation	in	costs	across	sites,	noting	varia-

ble	factors	such	as	population	density,	prices,	exchange	rates,	discount	rates,	inflation,	and	bulk	

discounts.	But	it	gives	short	shrift	to	cross-site	variation	in	the	size	of	average	treatment	effects	

which	play	an	equal	part	in	the	calculations	of	cost	effectiveness.	The	manual	briefly	notes	that	

diminishing	returns	(or	the	“last-mile”	problem)	might	be	important	in	theory,	but	argues	that	

the	baseline	levels	of	outcomes	are	likely	to	be	similar	in	the	pilot	and	replication	areas,	so	that	

the	average	treatment	effect	can	be	safely	transported	as	is.	All	of	this	lacks	a	justification	for	

transportability,	some	understanding	of	when	results	transport,	when	they	do	not,	or	better	

still,	how	they	should	be	modified	to	make	them	transportable.		

One	of	the	largest	and	most	technically	impressive	of	the	development	RCTs	is	by	

Banerjee	et	al	(2015),	which	tests	a	“graduation”	program	designed	to	permanently	lift	extreme-

ly	poor	people	from	poverty	by	providing	them	with	a	gift	of	a	productive	asset	(from	guinea-

pigs,	(regular-)	pigs,	sheep,	goats,	or	chickens	depending	on	locale),	training	and	support,	life	

skills	coaching,	as	well	as	support	for	consumption,	saving,	and	health	services;	the	idea	is	that	
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this	package	of	aid	can	help	people	break	out	of	poverty	traps	in	a	way	that	would	not	be	possi-

ble	with	one	intervention	at	a	time.	Comparable	versions	of	the	program	were	tested	in	Ethio-

pia,	Ghana,	Honduras,	India,	Pakistan,	and	Peru	and,	excepting	Honduras	(where	the	chickens	

died)	find	largely	positive	and	persistent	effects—with	similar	(standardized)	effect	sizes—for	a	

range	of	outcomes	(economic,	mental	and	physical	health,	and	female	empowerment).	One	site	

apart,	essentially	everyone	accepted	their	assignment,	so	that	many	of	the	familiar	caveats	do	

not	apply.	Replication	of	positive	ATEs	over	such	a	wide	range	of	places	certainly	provides	proof	

of	concept	for	such	a	scheme.	Yet	Bauchet,	Morduch,	and	Ravi	(2015)	fail	to	replicate	the	result	

in	South	India,	where	the	control	group	got	access	to	much	the	same	benefits,	what	Heckman,	

Hohman,	and	Smith	(2000)	call	‘substitution	bias’.	Even	so,	the	results	are	important	because,	

although	there	is	a	longstanding	interest	in	poverty	traps,	many	economists	have	long	been	

skeptical	of	their	existence	or	that	they	could	be	sprung	by	such	aid-based	policies.	In	this	sense,	

the	study	is	an	important	contribution	to	the	theory	of	economic	development;	it	tests	a	theo-

retical	proposition	and	will	(or	should)	change	minds	about	it.	

A	number	of	difficulties	remain.	As	the	authors	note,	such	trials	cannot	tell	us	which	

component	of	the	treatment	accounted	for	the	results,	or	which	might	be	dispensable—a	much	

more	expensive	multifactorial	trial	would	be	required—though	it	seems	likely	in	practice	that	

the	costliest	component—the	repeated	visits	for	training	and	support—is	likely	to	be	the	first	to	

be	cut	by	cash-strapped	politicians	or	administrators.	And	as	noted,	it	is	unclear	what	should	

count	as	(simple)	replication	in	international	comparisons;	it	is	hard	to	think	of	the	uses	of	

standardized	effect	sizes,	except	to	document	that	effects	exist	everywhere	and	that	they	are	

similarly	large	relative	to	local	variation	in	such	things.			

The	effect	size—the	average	treatment	effect	expressed	in	numbers	of	standard	devia-

tions	of	the	original	outcome—though	conveniently	dimensionless,	has	little	to	recommend	it.	

As	with	much	of	RCT	practice,	it	strips	out	any	economic	content—no	rates	of	return,	or	benefits	

minus	costs—and	it	removes	any	discipline	on	what	is	being	compared.	Apples	and	oranges	be-

come	immediately	comparable,	as	do	treatments	whose	inclusion	in	a	meta-analysis	is	limited	

only	by	the	imagination	of	the	analysts	in	claiming	similarity.	In	psychology,	where	the	concept	

originated,	there	are	endless	disputes	about	what	should	and	should	not	be	pooled	in	a	meta-

analysis.	Beyond	that,	as	argued	by	Simpson	(2016),	restrictions	on	the	trial	sample—often	good	

practice	to	reduce	background	noise	and	to	help	detect	an	effect—will	reduce	the	baseline	

standard	deviation	and	inflate	the	effect	size.	More	generally,	effect	sizes	are	open	to	manipula-
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tion	by	exclusion	rules.	It	makes	no	sense	to	claim	replicability	on	the	basis	of	effect	sizes,	let	

alone	to	use	them	to	rank	projects.		

The	graduation	study	can	be	taken	as	the	closest	to	fulfilling	the	“finding	out	what	

works”	aim	of	the	RCT	movement	in	development.	Yet	it	is	silent	on	perhaps	the	crucial	aspect	

for	policy,	which	is	that	the	trial	was	run	entirely	in	partnership	with	NGOs,	whereas	what	we	

would	like	to	know	is	whether	it	could	be	replicated	by	governments,	including	those	govern-

ments	that	are	incapable	of	getting	doctors,	nurses,	and	teachers	to	show	up	to	clinics,	or	

schools,	Chaudhury	et	al	(2005),	Banerjee,	Deaton	and	Duflo	(2004),	or	of	regulating	the	quality	

of	medical	care	in	either	the	public	or	private	sectors,	Filmer,	Hammer	and	Pritchett	(2000)	or	

Das	and	Hammer	(2005).	In	fact,	we	already	know	a	great	deal	about	“what	works.”	Vaccina-

tions	work,	maternal	and	child	healthcare	services	work,	and	classroom	teaching	works.	Yet	

knowing	this	does	not	get	those	things	done.	Adding	another	program	that	works	under	ideal	

conditions	is	useful	only	where	such	conditions	exist,	and	that	would	likely	be	unnecessary	when	

they	exist.	Finding	out	what	works	is	not	the	magic	key	to	economic	development.	Technical	

knowledge,	though	always	worth	having,	requires	suitable	institutions	if	it	is	to	do	any	good.		

	A	similar	point	is	documented	in	the	contrast	between	a	successful	trial	that	used	cam-

eras	and	threats	of	wage	reductions	to	incentivize	attendance	of	teachers	in	schools	run	by	an	

NGO	in	Rajasthan	in	India,	Duflo,	Hanna,	and	Ryan	(2012),	and	the	subsequent	failure	of	a	fol-

low-up	program	in	the	same	state	to	tackle	mass	absenteeism	of	health	workers,	Banerjee,	

Duflo,	and	Glennerster	(2008).	In	the	schools,	the	cameras	and	timekeeping	worked	as	intended,	

and	teacher	attendance	increased.	In	the	clinics,	there	was	a	short-run	effect	on	nurse	attend-

ance,	but	it	was	quickly	eliminated.	(The	ability	of	agents	eventually	to	undermine	policies	that	

are	initially	effective	is	common	enough	and	not	easily	handled	within	an	RCT.)	In	both	trials,	

there	were	incentives	to	improve	attendance,	and	there	were	incentives	to	find	a	way	to	sabo-

tage	the	monitoring	and	restore	workers	to	their	accustomed	positions;	the	force	of	these	in-

centives	is	a	“high-level”	cause,	like	gravity,	or	the	principle	of	the	lever,	that	works	in	much	the	

same	way	everywhere.	For	the	clinics,	some	sabotage	was	direct—the	smashing	of	cameras—

and	some	was	subtler,	when	government	supervisors	provided	official,	though	essentially	spe-

cious	reasons,	for	missing	work.	We	can	only	conjecture	why	the	causality	was	switched	in	the	

move	from	NGO	to	government;	we	suspect	that	working	for	a	highly-respected	local	NGO	is	a	

different	contract	from	working	for	the	government,	where	not	showing	up	for	work	is	widely	(if	

informally)	understood	to	be	part	of	the	deal.	The	incentive	lever	works	when	it	is	wired	up	
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right,	as	with	the	NGOs,	but	not	when	the	wiring	cuts	it	out,	as	with	the	government.	Knowing	

“what	works”	in	the	sense	of	the	treatment	effect	on	the	trial	population	is	of	limited	value	

without	understanding	the	political	and	institutional	environment	in	which	it	is	set.	This	under-

lines	the	need	to	understand	the	underlying	social,	economic,	and	cultural	structures—including	

the	incentives	and	agency	problems	that	inhibit	service	delivery—that	are	required	to	support	

the	causal	pathways	that	we	should	like	to	see	at	work.	

Trials	in	economic	development	are	susceptible	to	the	critique	that	they	take	place	in	ar-

tificial	environments.	Drèze	(2016)	notes,	based	on	extensive	experience	in	India,	“when	a	for-

eign	agency	comes	in	with	its	heavy	boots	and	suitcases	of	dollars	to	administer	a	`treatment,’	

whether	through	a	local	NGO	or	government	or	whatever,	there	is	a	lot	going	on	other	than	the	

treatment.”	There	is	also	the	suspicion	that	a	treatment	that	works	does	so	because	of	the	pres-

ence	of	the	“treators,”	often	from	abroad,	rather	than	because	of	the	people	who	will	be	called	

to	work	it	in	reality.		

	 There	is	also	much	to	be	learned	from	many	years	of	economic	trials	in	the	United	

States,	particularly	from	the	work	of	the	Manpower	Demonstration	Research	Corporation	(now	

known	by	its	initials	MDRC),	from	the	early	income	tax	trials,	as	well	as	from	the	Rand	Health	

Experiment.	Following	the	income	tax	trials,	MDRC	has	run	many	randomized	trials	since	the	

1970s,	mostly	for	the	Federal	government	but	also	for	individual	states	and	for	Canada,	see	the	

thorough	and	informative	account	by	Gueron	and	Rolston	(2011)	for	the	factual	information	

underlying	the	following	discussion.	MRDC’s	program,	like	that	of	JPAL	in	development,	is	in-

tended	to	find	out	“what	works”	in	the	state	and	federal	welfare	programs.	These	programs	are	

conditional	cash	transfers	in	which	poor	recipients	are	given	cash	provided	they	satisfy	certain	

conditions	which	are	often	the	subject	of	the	trial.	Should	there	be	work	requirements?	Should	

there	be	remedial	educational	before	work	requirements?	What	are	the	benefits	and	costs	of	

various	alternatives,	both	to	the	recipients	and	to	the	local	and	federal	taxpayers?	All	of	these	

programs	are	deeply	politicized,	with	sharply	different	views	over	both	facts	and	desirability.	

Many	engaged	in	these	disputes	feel	certain	of	what	should	be	done	and	what	its	consequences	

will	be	so	that,	by	their	lights,	control	groups	are	unethical	because	they	deprive	some	people	of	

what	the	advocates	“know”	will	be	certain	benefits.	Given	this,	it	is	perhaps	surprising	that	RCTs	

have	become	the	accepted	norm	for	this	kind	of	policy	evaluation	in	the	US.	

	 The	reasons	owe	much	to	political	institutions,	as	well	as	to	the	common	faith	that	RCTs	

can	reveal	the	truth.	At	the	Federal	level,	prospective	policies	are	vetted	by	the	non-partisan	
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Congressional	Budget	Office,	which	makes	its	own	estimates	of	the	budgetary	implications	of	

the	program.	Ideologues	whose	programs	score	poorly	by	the	CBO	have	an	incentive	to	support	

an	RCT,	not	to	convince	themselves,	but	to	convince	their	opponents;	once	again,	RCTs	are	es-

pecially	valuable	when	your	opponents	do	not	share	your	prior.	And	control	groups	are	easier	to	

put	in	place	when	there	are	insufficient	funds	to	cover	the	whole	population.	There	was	also	a	

widespread	and	largely	uncritical	belief	that	RCTs	always	give	the	right	answer,	at	least	for	the	

budgetary	implications,	which,	rather	than	the	wellbeing	of	the	recipients,	were	often	the	pri-

mary	(and	indeed	sometimes	the	only)	concern;	note	that	all	of	these	trials	are	on	poor	people	

by	rich	people	who	are	typically	more	concerned	with	cost	than	with	the	wellbeing	of	the	poor,	

Greenberg,	Schroder	and	Onstott	(1999).	MDRCs	trials	could	therefore	be	effective	dispute	rec-

onciliation	mechanisms	both	for	those	who	saw	the	need	for	evidence	and	for	those	who	did	

not	(except	instrumentally).	Note	that	the	outcome	here	fits	with	our	“public	health”	case;	what	

the	politicians	need	to	know	is	not	the	outcomes	for	individuals,	or	even	how	the	outcomes	in	

one	state	might	transport	to	another,	but	the	average	budgetary	cost	in	a	specific	place	for	each	

poor	person	treated,	something	that	a	good	RCT	conducted	on	a	representative	sample	of	the	

target	population	is	equipped	to	deliver,	at	least	in	the	absence	of	general	equilibrium	effects,	

timing	effects,	etc.	

	 These	RCTs	by	MDRC	and	other	contractors	deserve	much	credit.	They	have	demon-

strated	both	the	feasibility	of	large-scale	social	trials	including	the	possibility	of	randomization	in	

these	settings	(where	many	participants	were	hostile	to	the	idea),	as	well	as	their	usefulness	to	

policymakers.	They	also	seem	to	have	changed	beliefs,	for	example	in	favor	of	the	desirability	of	

work	requirements	as	a	condition	of	welfare,	even	among	many	of	those	who	were	originally	

opposed.	There	are	also	limitations;	the	trials	appear	to	have	had	at	best	a	limited	influence	on	

scientific	thinking	about	behavior	in	labor	markets.	The	results	of	similar	programs	have	often	

been	different	across	different	sites,	and	there	has	to	date	been	no	firm	understanding	of	why;	

indeed,	the	trials	are	not	designed	to	reveal	this,	Moffitt	(2004).	Finally,	and	perhaps	crucially	for	

the	potential	contribution	to	economic	science,	there	has	been	little	success	in	understanding	

either	the	underlying	structures	or	chains	of	causation,	in	spite	of	a	determined	effort	from	the	

very	beginning	to	peer	into	the	black	boxes.	Without	such	mechanisms,	transportability	is	al-

ways	in	doubt,	it	is	impossible	for	policymakers	or	academics	to	purposively	improve	the	poli-

cies,	and	the	contributions	to	cumulative	science	are	severely	limited.		
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	 The	RAND	health	experiment,	Manning	et	al	(1975a,	b),	provides	a	different	but	equally	

instructive	story	if	only	because	its	results	have	permeated	the	academic	and	policy	discussions	

about	healthcare	ever	since.	It	was	originally	designed	to	test	the	question	of	whether	more	

generous	insurance	would	cause	people	to	use	more	medical	care	and,	if	so,	by	how	much.	The	

incentive	effects	are	hardly	in	doubt	today;	the	immortality	of	the	study	comes	rather	from	the	

fact	that	its	multi-arm	(response	surface)	design	allowed	the	calculation	of	an	elasticity	for	the	

study	population,	that	medical	expenditures	decreased	by	–0.1	to	–0.2	percent	for	every	per-

centage	increase	in	the	copayment.	According	to	Aron-Dine,	Einav,	and	Finkelstein	(2013),	it	is	

this	dimensionless	and	thus	apparently	transportable	number	that	has	been	used	ever	since	to	

discuss	the	design	of	healthcare	policy;	the	elasticity	has	come	to	be	treated	as	a	universal	con-

stant.	Ironically,	they	argue	that	the	estimate	cannot	be	replicated	in	recent	studies,	and	it	is	

even	unclear	that	it	is	firmly	based	on	the	original	evidence.	This	account	points,	once	again,	to	

the	central	importance	of	transportability	for	the	usefulness	and	long-term	usefulness	of	a	trial.	

Here,	the	simple	direct	transportability	of	the	result	seems	to	have	been	largely	illusory	though,	

as	we	have	argued,	this	does	not	mean	that	more	complex	constructions	based	on	the	results	of	

the	trial	would	not	have	done	better.	

	

Conclusions		

RCTs	are	the	ultimate	in	credible	estimation	of	average	treatment	effects	in	the	population	be-

ing	studied	because	they	make	so	few	assumptions	about	heterogeneity,	causal	structure,	

choice	of	variables,	and	functional	form.	They	are	truly	nonparametric.	And	indeed,	this	is	some-

times	just	what	we	want,	particularly	where	we	have	little	credible	prior	information.	RCTs	are	

often	convenient	ways	to	introduce	experimenter-controlled	variance—if	you	want	to	see	what	

happens,	then	kick	it	and	see,	twist	the	lion’s	tail—but	note	that	many	experiments,	including	

many	of	the	most	important	(and	Nobel	Prize	winning)	experiments	in	economics,	do	not	and	

did	not	use	randomization,	Harrison	(2013),	Svorencik	(2015).	But	the	credibility	of	the	results,	

even	internally,	can	be	undermined	by	excessive	heterogeneity	in	responses,	and	especially	

when	the	distribution	of	effects	is	asymmetric,	where	inference	on	means	can	be	hazardous.	

Ironically,	the	price	of	the	credibility	in	RCTs	is	that	all	we	get	are	means.	Yet,	in	the	presence	of	

outliers,	means	themselves	do	not	provide	the	basis	for	reliable	inference.	And	randomization	in	

and	of	itself	does	nothing	unless	the	details	are	right;	purposive	selection	into	the	experimental	

population,	like	purposive	selection	into	and	out	of	assignment,	undermines	inference	in	just	
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the	same	way	as	does	selection	in	observational	studies.	Lack	of	blinding,	whether	of	partici-

pants,	trialists,	data	collectors,	or	analysts,	undermines	inference	by	permitting	factors	other	

than	the	treatment	to	affect	the	outcome,	akin	to	a	failure	of	exclusion	restrictions	in	instru-

mental	variable	analysis.		

The	lack	of	structure	can	become	seriously	disabling	when	we	try	to	use	RCT	results,	

outside	of	a	few	contexts,	such	as	program	evaluation,	hypothesis	testing,	or	establishing	proof	

of	concept.	Beyond	that,	we	are	in	trouble.	We	cannot	use	the	results	to	help	make	predictions	

elsewhere	without	more	structure,	without	more	prior	information,	and	without	having	some	

idea	of	what	makes	treatment	effects	vary	from	place	to	place,	or	time	to	time.	There	is	no	op-

tion	but	to	commit	to	some	causal	structure	if	we	are	to	know	how	to	use	RCT	evidence	else-

where,	or	to	use	the	estimates	out	of	the	original	context.	Simple	generalization	and	simple	ex-

trapolation	just	do	not	cut	the	mustard.	This	is	true	of	any	study,	experimental	or	observational.	

But	observational	studies	are	familiar	with,	and	routinely	work	with,	the	sort	of	assumptions	

that	RCTs	claim	to	avoid,	so	that	if	the	aim	is	to	use	empirical	evidence,	any	credibility	advantage	

that	RCTs	have	in	estimation	is	no	longer	operative.	

Yet	once	that	commitment	has	been	made,	RCT	evidence	can	be	extremely	useful,	pin-

ning	down	part	of	a	structure,	helping	to	build	stronger	understanding	and	knowledge,	and	help-

ing	to	assess	welfare	consequences.	As	our	examples	show,	this	can	often	be	done	without	

committing	to	the	full	complexity	of	what	are	often	thought	of	as	structural	models.	Yet	without	

the	structure	that	allows	us	to	place	RCT	results	in	context,	or	to	understand	the	mechanisms	

behind	those	results,	not	only	can	we	not	transport	whether	“it	works”	elsewhere,	but	we	can-

not	do	the	standard	stuff	of	economics,	which	is	to	say	whether	or	not	the	intervention	is	actual-

ly	welfare	improving,	see	Harrison	(2014)	for	a	vivid	account	that	sharply	identifies	this	and	oth-

er	issues.	Without	knowing	why	things	happen	and	why	people	do	things,	we	run	the	risk	of	

worthless	casual	(“fairy	story”)	causal	theorizing	and	have	essentially	given	up	on	one	of	the	

central	tasks	of	economics.		

We	must	back	away	from	the	refusal	to	theorize,	from	the	exultation	in	our	ability	to	

handle	unlimited	heterogeneity,	and	actually	SAY	something.	Perhaps	paradoxically,	unless	we	

are	prepared	to	make	assumptions,	and	to	say	what	we	know,	making	statements	that	will	be	

incredible	to	some,	all	the	credibility	of	the	RCT	is	for	naught.	

In	the	specific	context	of	development	that	has	concerned	us	here,	RCTs	have	proven	

their	worth	in	providing	proofs	of	concept	and	at	testing	predictions	that	some	policies	must	
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always	work	or	can	never	work.	But,	as	elsewhere	in	economics,	we	cannot	find	out	why	some-

thing	works	by	simply	demonstrating	that	it	does	work,	no	matter	how	often,	which	leaves	us	

uninformed	as	to	whether	the	policy	should	be	implemented.	Beyond	that,	small	scale,	demon-

stration	RCTs	are	not	capable	of	telling	us	what	would	happen	if	these	policies	were	implement-

ed	to	scale,	of	capturing	unintended	consequences	that	typically	cannot	be	included	in	the	pro-

tocols,	or	of	modeling	what	will	happen	if	schemes	are	implemented	by	governments,	whose	

motives	and	operating	principles	are	different	from	the	NGOs	who	typically	run	trials.	While	it	is	

true	that	abstract	knowledge	is	always	likely	to	be	beneficial	to	economic	development,	success-

ful	development	depends	on	institutions	and	on	politics,	matters	on	which	RCTs	have	little	to	

say.	In	the	end,	RCTs	are	one	of	the	many	external	technical	fixes	that	have	meandered	off	and	

on	the	development	stage	since	the	Second	World	War,	including	building	infrastructure,	getting	

prices	right,	and	service	delivery,	none	of	which	have	faced	up	to	the	essential	domestic	political	

foundations	for	development.	
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