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  Exploratory Research is More Reliable than Confirmatory Research  

 

 

Abstract 

 

Statistical methodology distinguishes between “confirmatory” research, in which 

individual hypotheses are proposed by a researcher and then tested with some data 

set, and “exploratory” research in which a very large number of hypotheses, 

generated from the data, are tested or otherwise assessed.  The dominant opinion is 

that exploratory research is less reliable than confirmatory research, but several 

authors have argued that confirmatory research produces a high proportion of false, 

non-reproducible relationships because true hypotheses in a domain are rare, 

scientists are little better than chance at guessing true hypotheses to test among the 

many possibilities, and the conventional .05 level tests and low power result in 

many false positive relationships.  It is argued and illustrated here that none of these 

objections bear against contemporary computerized search methods, and the rarity 

of true hypotheses among all of those possible in a domain is actually an advantage 

for these “exploratory” methods.  
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1. Introduction. 

 

For decades the statistical literature has contrasted “exploratory” research with 

“confirmatory” research, and claimed or implied that exploratory research is less 

reliable, more likely to lead to false claims of dependence or causality.  Even in the 

face of the increasing necessity for computerized, data-driven inference methods to 

analyze ‘big data,” the drumbeat continues in a influential manifesto by Ioannidis 

(2005) claiming that “Most Published Research Is False,” and in a recent statement 

of the American Statistical Association (2016) on the use of “p values” in statistical 

tests. In the first instance, these criticisms address conventional “confirmatory” 

hypothesis assessment, but they are commonly emphasized for “exploratory 

research” for causal relations.  To the contrary, for causal discovery, exploratory 

research, done right, is more reliable than is confirmatory research; the objections 

made to confirmatory research are the virtues of exploratory research. 

“Confirmatory” research is the testing or (to include Bayesians) assessment on a 

body of data of one, or a handful, of hypotheses somehow obtained without regard 

for the data on which they will be tested. “Exploratory” research is any in which the 

hypotheses that are assessed on a body of data are functions of the data. The 

mathematical relation between a hypothesis and data used in assessments is often 

the same in exploratory and confirmatory research, but while confirmatory research 

examines one or a handful of hypotheses identified by an investigator, exploratory 

research sometimes assesses billions of hypotheses found by computer.  The large 

data sets used in contemporary exploratory research in astronomy, climate science, 

genomics, neuroscience and, increasingly, social science, are typically not 

experimental, in the sense that the variables whose causal connections are 

investigated have not been directly controlled. 

 

2. The Critical Arguments  
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John Ioannidis’ essay “Most Published Research Findings are False” prompted a 

healthy focus on reliability and reinforced doubts about “confirmatory” and 

“exploratory” research. David Colquohoun (2014) argued by simulation that the 

false discovery rate of “significant” positive results using a .05 significance level in 

confirmatory research may be 30% or more.  The reservations Ioannidis and others 

express about the reliability of exploratory research, however, rest on a 

misunderstanding of modern methods for estimating causal relations from very 

high dimensional observational and experimental data.  Ioannidis and Colquohoun’s 

arguments are one side of the argument given here that exploratory research from 

“big data” using appropriate methods is more reliable than confirmatory research 

when the frequency of true hypothesis among those that might be considered in a 

domain of inquiry is low. Ioannidis’ and Colquhoun’s concern was with the base rate 

of true causal relationships in a domain of inquiry. The methodology they criticize 

is: Select hypothesis, H, that variables A, B are causally connected; have data D; 

chose test statistic S and level alpha to test null hypothesis that A, B are 

independent; reject the null if S(D) < alpha; if the null is rejected, report that H is 

confirmed.  They generalize an old argument that notes that reporting only 

“positive” results of hypothesis tests of multiple independent variables would result 

in reporting only false results. Assuming there are a great many unspecified claims 

that might be made in a subject domain, of which only a small fraction are true, and 

the selection of hypotheses to test is independent of their truth, Ioannidis argues 

that a positive finding of a relationship is more likely to be true than false just if (1- 

β)R > α , where (1- β) is the power of the test,  α  is the cut-off or alpha value for 

rejecting the null, and R is the proportion of true relationships to false (no 

relationship) in the domain.  His claim is that in most studies the power may not be 

very high and R maybe very low and so the inequality will not hold. Colquhoun 

reinforces the argument with simulations, again assuming that the true hypotheses 

are rare and selection of hypotheses to test is independent of their truth. He 

estimates that 30% of positive results reported using a .05 significance level are 

false. 



 4 

 

The significance level in psychological and social science research is commonly put 

at .05, although lower (.01) and higher (.1) values are sometimes used. By contrast, 

the “five sigma” cutoff used in experimental physics corresponds to 3 x 10 -7, a much 

more severe test.   Why not use five sigma in social science and psychology? 

Reported p values of tests in psychology and social science are rarely so small.  If 

Ioannidis and Colquohoun are correct that true hypotheses are rare in this subject, 

and researchers are no better than chance at selecting true hypotheses to test—and 

even if they are somewhat better than chance--then the answer seems plain: a 

psychologist or social scientist, testing one hypothesis at a time would rarely if ever 

in a career have a hypothesis to publish. The entire evaluation structure of academic 

social and behavioral science careers would collapse.  

 

There is another respect in which confirmatory research is not severe, or not severe 

enough. A common complaint is that results found on one sample of subjects are not 

found with other samples from even slightly different populations.  One obvious 

remedy is to have larger and more diverse samples, but that is not enough.  A 

relationship might hold on average but fail to hold in relevant subpopulations. A 

relationship might seem to hold but not be causal because it is due to common 

causes that have not been measured.  Not only are large, diverse samples of people 

needed, but also large, diverse measures of their diversity. But with more variables, 

there are more possible confoundings to test, exponentially more. The number of 

possible sets of common causes of any 2 of N variables is 2(N – 2).  For big N, no one 

could do all of the tests one at a time, and even it such tests were done, Ioannidis 

and Colquhoun’s arguments would bear on them.  Severity in confirmatory research 

appears impossible. 

 

3. Modern Search Methods 
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Ioannidis claims that false positives are especially likely to result from “exploratory” 

research where multiple hypotheses are examined: ”The greater the number and 

the lesser [sic] the selection of tested relationships in a scientific field, the less likely 

the research findings are to be true. Thus research findings are more likely true in 

confirmatory designs…than in hypothesis generating designs” [because in 

exploratory studies a lot of false hypotheses are tested, and the more that are tested, 

the more errors will be made.] ”Fields considered highly informative and creative 

given the wealth of the assembled and tested information, such as microarrays and 

other high-throughput discovery oriented research…should have extremely low 

PPV” [Positive Predictive Value, the probability that a reported result is true]. (p. 

0698). The claim might be correct if modern search methods used the strategy 

Ioannidis and Colquohoun presuppose, but they do not.  The first point to note is 

that search methods are in one respect familiar animals: they are statistical 

estimators. No one would seriously suggest that the outputs of statistical estimators 

should not depend on the data, or that the only appropriate procedure for 

parameter estimation is to first guess the value of a parameter in ignorance of the 

data and then test the estimate.  But that is what critics wrongly assume the 

computerized search for causal relations must be. Exploratory research for causal 

relationships is statistical parameter estimation, sometimes with the aid of 

hypothesis tests, sometimes not.  Statistical estimation concerns single parameters 

(e.g., a mean), vectors of parameters (e.g., mean and variance), and matrices of 

parameters (e.g., covariances). Causal inference in systems with a large number of 

variables (“high dimensional” systems) is matrix estimation. Suppose a large 

number N of variables are measured for each of n units or cases. Assume for the 

moment that unobserved common causes are not countenanced. Then a causal 

theory of the system is given by entries in an N X N matrix, where a 1 entry indicates 

that the row variable causes the column variable, and a 0 indicates otherwise. The 

inference problem is to estimate that matrix from the sample data. Where 

unmeasured common causes are entertained, third and fourth values for entries are 

allowed, indicating respectively a common cause but no cause from the row to the 

column variables, or both a common cause and a cause from the row to the column 
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variables.  Variations on these forms of matrix estimation are common. Well-known 

procedures estimate the topological structure of a directed graph representing 

causal relations. For these procedures the matrix is different. An entry of 1 indicates 

that the row variable is a parent of the column variable in the graph.  An entry of “-“ 

indicates that either the row is a parent of the column or vice versa.  Inclusion of 

unmeasured confounders is as above. Assuming transitivity, a matrix of causal 

connections can be generated from a matrix of direct causal connections. Still more 

elaborate estimation problems occur in exploratory research.  Consider the problem 

of estimating from among a set of measured variables those subsets such that each 

subset has a single, unmeasured common cause, and estimating the direct causal 

connections among those unmeasured variables. This too, can be viewed as a 

parameter estimation problem for entries in a multidimensional matrix, but ugly 

enough that it need not be detailed.  Methods for exploratory research are seldom 

presented as estimation problems, and while matrix representations of the 

parameters are sometimes referred to, they are never presented, but they lay 

behind the explorations.  

 

Exploratory causal search is just parameter estimation; a causal search algorithm is 

just an estimator.  As with more familiar estimators, various questions about 

convergence to the truth as a function of sample size can be asked: Does the 

estimator give a point value or a set of values? Given a true joint distribution of the 

measured variables, under what conditions does the algorithm return true 

information? As the sample size from a population increases without bound, does 

the estimator converge to true information? If it converges, does it do so uniformly, 

that is provide a sample size for which the probability of error is within some 

bound? Such questions have been asked and answered for several causal search 

algorithms, and they are well-posed for any new ones that will surely be developed.  
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Methods for “exploratory” search for causal relations, available for 25 years but only 

recently reconfigured for “big data,” do not follow the “one hypothesis—one test” 

paradigm, and with high dimensional data, the methods that use a sequence of 

hypothesis tests do not use a .05 significance level. Their estimates are made by 

strategies that, while some of them ultimately depend on a complex series of 

Bayesian estimates or hypothesis tests, impose severe conditions on any positive 

causal claim. In particular, for the two procedures illustrated in the subsequent 

examples: 

 

 Each positive causal claim is tested or assessed multiple times, against 

multiple competing hypotheses. 

 The procedures are biased against positive results. 

 The procedures have an adjustable bias against weak effects and in favor of 

strong effects, and can be used in various ways to find the variables with the 

strongest total effect size for an outcome of interest. 

 The reverse of the concern about rare positive relations holds: the 

procedures are most reliably accurate, most informative, and most feasible 

when the true positive causal relations are rare. 
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Search algorithms for causal relations can try to estimate a directed graph (DAG), or 

try to estimate a class of “indistinguishable” directed graphs.  For acyclic directed 

graphs (DAGS) the Markov equivalence class of a DAG is the set of all graphs that 

imply the same conditional independence relations; two DAGs are in the same 

Markov equivalence class if they have the same adjacencies when directions are 

ignored, and if they share the same “unshielded colliders”—triples X -> Y <- Z where 

X and Z are not adjacent. A Markov equivalence class is essentially a set of 

alternative explanations of a data generating process. There are several automated 

strategies for identifying a Markov equivalence class from sample data. One 

procedure, PC-Max (Ramsey, 2016), uses a sequence of conditional independence 

tests. Another, the Fast Greedy Equivalence Search (FGES) algorithm (Ramsey, et al., 

2016), uses a quasi-Bayesian score, the Bayes Information Criterion (BIC) score. 

Their search strategies are quite different. FGES starts with no connections between 

variables, builds up a Markov equivalence class edge by edge, and when the BIC 

score can no longer be improved, tries removing edges to improve the score. Given 

their assumptions, the PC-Max and FGES algorithms are asymptotically (in the 

sample size) “pointwise” correct (“consistent”) in the sense that in the large sample 

limit they converge to returning the set of directed acyclic graphs data that imply 

the same conditional independence relations as the graph of the causal relations of 

the structure that generated the data. PC-Max, is uniformly consistent for sparse 

graphs and appropriate rates of growth of sample sizes.  Aside from asymptotic 

theory, there are procedural advantages over the one hypothesis-one test 

methodology, advantages that defeat the objections to “exploratory methods. For 

example, FGES estimates a series of posterior probabilities as it dynamically 

changes the class of models it considers, starting with an empty graph and adding 

stepwise the edge that most improves the Bayes Information Criterion (BIC) score 

and then removing edges until that score cannot be further improved.  The BIC score 

is-2ln L +  c k ln(n) where ln is the natural logarithm, L is the maximum likelihood 

estimate, k is number of free parameters of the model, and n is the sample size. The 

factor c is usually set at 1, but can be any multiple of 1 without affecting asymptotic 

consistency.  A lower BIC score is better. The c k ln(n) term constitutes a bias 
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against positive results. The greater the value of c, the greater is that bias; with 

higher values of c, fewer connections are found, and those which give the data the 

greater likelihood are the more likely to be found.  A sense of both the severity and 

computational demands of the FGES criteria can be gained by considering what it 

requires to add a first edge in a million variable problem. There are approximately 

500,000,000,000 + 1 possible edges to add, including adding no edge (the + 1). Only 

the edge (or no edge) with the highest BIC score is added. The BIC score has an 

adjustable term, c above, that penalizes a model for its number of edges. By 

increasing the penalty, the search can (and for very high dimensional data generally 

must) be biased against positing causal connections. In contrast, PC-Max begins with 

a complete, undirected graph and removes edges sequentially. Undirected edges are 

then directed, where possible, to form a Markov equivalence class. In the first step, 

all edges are removed between any pair of uncorrelated (or more generally, 

independent) variables, again requiring 500,000,000,000 tests in a million variable 

problem. Of course, false connections may remain. The procedure next tests the 

independence of every pair of variables left adjacent from the first step, conditional 

on each single variable remaining adjacent to any one of them. For variables left 

adjacent after the second step, the procedure tests their independence conditional 

on every pair of variables adjacent to one or the other of them. And so on. The 

undirected connections are then directed, where possible, by attending to whether 

in any surviving triple X – Y – Z of undirected edges, with X, Z not adjacent, Y was or 

was not conditioned on in removing the X – Z adjacency. Each connection reported 

has survived a multitude of tests, effectively on different subsets of the data. 

4.  Examples 

Precision is the frequency with which a reported result is true. Recall is the 

frequency with which true relations are found. In the examples that follow, all of the 

precisions and recalls are with respect to the Markov equivalence class. 
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For two random directed acyclic graphs of average degree 2 (the average number of 

edges attached to a variable) with 1000 Gaussian variables, parameterized as a 

linear model with unit variance and mean zero disturbance terms, coefficients 

drawn uniformly from [-1.5 - -0.5] ∪ [0.5 – 1.5], and sample size 1000, testing for 

independence of 100 randomly chosen pairs of variables using Fisher Z and 

significance cutoffs of .01 and .05, respectively, resulted in 57% and 59% false 

positives, in accord with the concerns of Ioannidis and Colquohoun.  Lowering the 

alpha level further would of course reduce the proportion of false positives at the 

cost of decreasing recalls. With contemporary search methods on similar and even 

more difficult problems the results are quite different. On the same problem an 

improvement on the PC algorithm, PC-Max, returns 100 percent precision over 10 

repetitions with novel graphs and parameter values in each case, and 96% recall. 

Alpha is chosen roughly by order of magnitude of the number of variables, in this 

case .001. When the density of true positives is doubled by randomly generating ten 

directed acyclic graphs of average degree 4, the precision is unchanged and recall 

falls to 85%. These numbers do not reflect the accuracies with which the directions 

of edges are found. Those are 98% and 97% average precision in the 1000 variable 

degree 2 and degree 4 cases respectively, and 99% in the 20,000 variable case.  

Recalls are lowest, 81%, for the degree 4, 1000 variable case. 
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Besides search with appropriate sequences of tests, there are quasi-Bayesian search 

algorithms suitable for high dimensional problems, notably the Fast Greedy 

Equivalence Search. Ramsey randomly generated sparse, linear causal models with 

1,000 to 1,000,000 Gaussian variables, parameterized as above. Sample size was 

1,000 in all runs. The condition warned against by Ioannidis holds: the sought after 

positive truths of causal connections are extremely rare. The FGES results are given 

in Table 1 as percentages of directed and directed edges in the Markov equivalence 

class of the true directed acyclic graph (Adj is adjacencies, meaning one or the other 

variables of a pair directly influences the other, Arr is direction of influence; Prec is 

precision, the frequency with which claimed relationships are true; Rec is recall, the 

frequency with which true relationships are claimed; Rep is number of repetitions 

with independently generated directed acyclic graphs and independently, randomly 

selected values of their linear coefficients and disturbance variances; Elapsed is wall 

time for a single run on the Pittsburgh Super Computer, or average of wall times for 

multiple runs with a quad core MacBook Pro. All numbers are averages over the 

runs.) 

 

# Nodes # Edges 
# 

Rep 

Adj 

Prec 

Adj 

Rec 

Arr 

Prec 

Arr 

Rec 

# 

Processors 

Elapse

d 

1000 1000 100 
98.92

% 

94.77

% 

98.92

% 

90.05

% 
2 1.2 s 

1000 2000 100 
98.43

% 

88.04

% 

96.27

% 

85.74

% 
4 8.5 s 

30,000 30,000 10 
99.77

% 

94.60

% 

99.04

% 

89.97

% 
120 53.5 s 

30,000 60,000 10 
99.81

% 

86.72

% 

99.23

% 

84.47

% 
120 3.4 m 

1,000,00

0 

1,000,00

0 
1 

93.90

% 

94.83

% 

83.11

% 

90.57

% 
120 11.0 h 
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Table 1: Average over  random repetitions at sample size 1000 of accuracies and run 

times of the Fast Greedy Equivalence Search Algorithm (FGES) for Gaussian data 

using a BIC score with penalty 4. 

 

According to Ioannidis’ conclusion, Table 1, should be impossible.  The source code 

and simulation facilities used are available at https://github.com/cmu-phil/tetrad. 

 

Direct comparisons of FGES and PC-Max with samples of 1000 units and 20,000 

variables and with graphs parameterized as above finds comparable precisions but 

better recall with FGES. 

 

Alg Ave Degree AP AR AHP AHR E 

PC-Max 2 1.00 0.94 0.99 0.87 225.91 

FGS 2 1.00 0.98 1.00 0.98 175.24 

PC-Max 4 1.00 0.79 0.99 0.74 335.25 

FGS 4 1.00 0.93 1.00 0.93 264.50 

 

Table 2: Comparison of constraint testing search (PC-Max) with scoring search 

(FGS) for time and recovery of 20,000 variable Gaussian Markov Equivalence 

Classes with alpha .00001 and BIC penalty 4 and sample sizes 1,000. Runtimes are 

for a 4 core MacBook Pro. 

 

Kalisch and Buhlmann (2007) used improved tests in PC, the original asymptotically 

correct automated search algorithm for Markov equivalence classes, with sample 

sizes increasing with the number of variables, and graphs of degree 2 and degree 5; 

alpha for tests was 0.01 in all cases (they do not specify the range of linear 

coefficients or disturbance variances). With up to 20,000 variables their true 

positive rates approach 100% and their false positive rates are beneath 15% when 

the sample sizes approximate the number of variables.  

https://github.com/cmu-phil/tetrad
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Ioannidis and Colquhoun rightly note that effect size matters, but effect size and 

exploratory strategy can interact.  Maatuis and colleagues (2010) have used a 

modification of PC, PC-Stable, together with the false discovery rate to compute a 

lower bound on the expected total effect of genes on phenotypes, and resampled to 

estimate the genes most likely to affect the phenotype. With more than 20,000 

variables, in S. cerevisiae and Arabidopsis thaliana they find effects of genes that are 

known regulators and correctly predict new regulators, confirmed by knockout 

experiments. All of these examples assume Gaussian distributions and linear 

systems, but those assumptions are inessential. Both PC and FGS run with 

categorical variables, and conditional independence tests for non-Gaussian 

distributions have been developed (Ramsey, 2014l Gretton, et al. 2009; Zhang, et al. 

2012). In fact, determination of directions of influence is more accurate and more 

informative when the variables have non-Gaussian distributions and non-Gaussian 

methods are used.  

 

Any number of concerns arise: what about feedback relations, time series, 

unmeasured common causes?  Building on work that has long been available for 

small problems, there are already methods in development for high dimensional 

stationary time series, feedback cycles and unmeasured confounding.   

 

5. Conclusion 
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Automated search for causal relations has a long history of methods—factor 

analysis for example--that have no theoretical guarantees of accuracy and little 

confirmation of accuracy by simulation. That is no longer true.  Contemporary 

misnamed “exploratory” methods for causal relations are better understood as 

consistent but complex statistical estimators. Ioannidis’ argument against 

“exploratory” methods does not hold for them, and in fact the main assumption in 

his and Colquhoun’s arguments, rarity of true relations among possible relations, is 

an advantage for the methods. With appropriate checks for distribution 

assumptions, use of background knowledge, and testing on simulated data from 

systems thought to approximate the distribution from target population, these 

methods have proved accurate and informative for high dimensional problems. 

Improvements on these and other search methods continue to appear regularly and 

rapidly. 

 

If the social and behavioral sciences aim to begin to approximate the accuracies we 

expect from other sciences, it may well be that the fundamental designs of studies 

must change to include diverse populations, with measurements of every feasible 

feature, and analysis with accurate automated algorithms for estimating causal 

relationships. 
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