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Abstract

This paper studies the identification of the coefficients in a linear equation when
data on the outcome, covariates, and an error-laden proxy for a latent variable are
available. We maintain the classical error-in-variables assumptions and relax the as-
sumption that the proxy is excluded from the outcome equation. This enables the proxy
to directly impact the outcome and allows for differential measurement error. Without
the exclusion restriction, we first show that the coefficients on the latent variable, the
proxy, and the covariates are not identified. Then, we derive the sharp identification
regions for these coefficients under either or both of two auxiliary restrictions. The first
restriction weakens the assumption of “no measurement error” by imposing an upper
bound on the net of the covariates “noise to signal” ratio, i.e. the ratio of the variance
of the measurement error to the variance of the latent variable given the covariates.
The second restriction weakens the proxy exclusion restriction by specifying whether
the latent variable and its proxy affect the outcome in the same or the opposite direc-
tion, if at all. Using the College Scorecard data, we employ this framework to study
the financial returns to college selectivity and characteristics. Here, college selectivity,
defined as the average SAT score of a student cohort, serves as a proxy for the latent
average scholastic ability and is included in the average earnings equation. We obtain
an informative upper bound on the return to college selectivity which becomes smaller
upon conditioning on the instructional expenditures per student and the completion
rate. Further, we obtain tight bounds on the returns to the college characteristics
and find that conditioning on the composition of majors reduces the magnitude of the
bounds on the effect of some of these characteristics, such as the gender composition.
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1 Introduction

The decisions of whether and where to pursue a college degree are often life-altering and

merit careful consideration. For instance, several news articles offer advice to students who

are applying to, or choosing among, universities. A Wall Street Journal article (Prior, 2014)

suggests to an aspiring entrepreneur, that “a big name doesn’t always matter much,” to

be “mindful of debt,” and that “you don’t need to major in business.” A New York Times

article (Bruni, 2013) advises students to “favor schools with higher percentages of foreigners”

and answers the question “does brand matter?” inconclusively. A National Public Radio

commentary (O’Connell, 2007) suggests that “[college] size matters” and that “a name-brand

college will not guarantee your success.” An Atlantic article (Thompson, 2014), finds that

“smaller schools with high concentrations of computer science and engineering students near

large cities with thriving technology scenes [...] dominate the list” of schools with highest-

earnings graduates. In addition to several important nonpecuniary outcomes, a student

who is deliberating among colleges may consider the expected financial return in the labor

market. What is the empirical evidence about the financial returns to college selectivity and

characteristics in the United States?

One challenge in answering this question is the limited availability of comprehensive data

on the education characteristics and earnings of individuals in the United States (see e.g.

Kirkeboen, Leuven, and Mogstad (2016) who make use of rich administrative data in Norway

to study the payoffs to different types of postsecondary education). As a result, the existing

studies often rely on survey data on individuals attending a narrow subset of US colleges (e.g.

Dale and Krueger, 2002, 2014) or are focused on data pertaining to students who applied to

a particular public institution (e.g. Hoekstra, 2009). A second challenge in answering this

question arises because students with higher unobserved scholastic ability and motivation

may earn more and sort into colleges that are more selective or that have particular charac-

teristics. This sorting makes it difficult to identify the financial returns to college selectivity

and characteristics. To address this endogeneity problem, the literature relies on modelling

how students choose a college (e.g. Brewer, Eide, and Ehrenberg, 1999), matching students

based on observed characteristics such as their SAT scores and college application records

(e.g. Dale and Krueger, 2002, 2014; Black and Smith, 2004), or contrasting the earnings
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of students who are just below a university’s admission cutoff with the earnings of students

who are just above the cutoff (see e.g. Hoekstra, 2009). The literature’s findings are mixed;

some studies report evidence for a positive return to college selectivity (e.g. Brewer, Eide,

and Ehrenberg, 1999; Black and Smith, 2004; Hoekstra, 2009) while others do not (e.g. Dale

and Krueger, 2002, 2014).

To help inform students and remedy the lack of information on college characteristics

and student outcomes, the Obama Administration released the College Scorecard (CS) data

which reports data on postsecondary institutions in the US. The CS data is aggregated at

the institution level and includes information on the institution, student body, affordability,

admission and academic attributes, and earnings outcomes. While the CS data has some

limitations, as we discuss below, it is “the first nationally comprehensive data on students’

post-enrollment earnings, measured for a consistently defined set of students at nearly all

post-secondary institutions in the United States” (Council of Economic Advisors, 2015).

We develop a parsimonious econometric framework that is suitable for analyzing the CS

data and employ this framework and data to measure the returns to college selectivity and

characteristics.

Specifically, following the literature (e.g. Dale and Krueger, 2002, 2014; Hoxby, 2009),

we define college selectivity as the average SAT equivalent score of the cohort of enrolled

students. We then model the logarithm of the average earnings of the cohort six years

after enrolling in the college as a function of the college’s selectivity, a rich set of aggregate

characteristics of the college, and the average unobserved ability of the cohort. We allow

the average unobserved ability of the cohort to freely statistically depend on the aggregate

college characteristics. To account for the possibility that students select into colleges based

on unobserved ability, we let the average SAT score (i.e. the college selectivity) serve a second

role as an error-laden proxy for the average unobserved ability. We then characterize the

identification regions of the earnings equation coefficients and study the sensitivity of these

regions to two types of restrictions. The first restricts the extent of the measurement error

in how the average SAT score proxies the average ability. The second restricts the direction

of the effects of the college selectivity and the average ability on the average earnings.

Thus, this paper’s econometric method studies the identification of the effects of the

latent variable U (average ability), the error-laden proxy W (average SAT score), and the
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covariates X (e.g. gender and major composition) on the outcome Y (average wage) when

the proxy is included in the linear outcome equation. In this case, the measurement error is

“differential” since the proxy may help predict the outcome even after conditioning on the

latent variable. Specifically, the paper puts forward new partial identification results that

enable inference in a leading setting for differential measurement error that “occurs when

W is not merely a mismeasured version of [U ], but is a separate variable acting as a type of

proxy for [U ]” (Carroll, Ruppert, Stefanski, and Crainiceanu, 2006, p. 36). We apply our

results to study the returns to college selectivity and characteristics when college selectivity

can directly affect the average earnings, beyond its role as a proxy for the average unobserved

ability. More generally, this paper’s econometric analysis applies to many other contexts in

which a researcher suspects that an error-laden proxy for a latent variable may have a direct

impact on the outcome1.

Compared to the literature, our econometric framework imposes minimal assumptions.

In particular, we maintain the classical error-in-variables assumptions and relax the common

assumption that the proxy is excluded from the outcome equation. Recall that when the

proxy exclusion restriction is imposed, substituting a proxy for the latent variable is not

harmless: a regression of the outcome on the proxy and covariates does not identify the

effects of the latent variable and covariates. In particular, the regression coefficient associated

with the proxy suffers from “attenuation bias.” Nevertheless, one can obtain sharp bounds

for these coefficients (see e.g. Klepper and Leamer, 1984; Bollinger, 2003). How do these

sharp bounds change when we allow the proxy to be included in the outcome equation? We

advance the econometrics literature on measurement error by removing the proxy exclusion

restriction. First, we characterize the joint sharp identification region for the coefficients

on the latent variable, the proxy, and the covariates as well as for the net of the covariates

“signal to total variance ratio,” i.e. the ratio of the variance of the latent variable given

the covariates to the variance of the proxy given the covariates. When projecting this joint

identification region onto the supports of the coefficients associated with the latent variable,

the proxy, and the covariates, we show that these coefficients are not separately identified.

This demonstrates the crucial role that the proxy exclusion restriction plays in ensuring

1For example, the GPA of an employee may serve as a proxy for her latent ability and may have a direct
impact on her wage when it is known to the employer. Similarly, a patient may alter her behavior after
learning the result of a medical test that serves as a proxy for a latent health factor.
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the validity of the standard bounds discussed above. To proceed, we derive the joint and

projected sharp identification regions under either or both of two auxiliary restrictions. The

first restriction weakens the benchmark assumption of “no measurement error” by imposing

an upper bound on the net of the covariates “noise to signal” ratio, i.e. the ratio of the

variance of the measurement error to the variance of the latent variable given the covariates.

For example, restricting this ratio to be less than 1 assumes that, given the covariates, at

most (at least) half of the variance in the average SAT score, i.e. college selectivity, is due

to the measurement error (the average ability). By varying this upper bound, a researcher

can conduct a sensitivity analysis of how the measurement error in the proxy affects the

sharp identification regions. The second restriction weakens the proxy exclusion restriction

by specifying whether the latent variable and its proxy affect the outcome in the same or the

opposite direction, if at all. For instance, in the empirical analysis, we sometimes assume

that the effects of the average ability and the college selectivity on the average earnings

have the same sign (e.g. non-negative). Nevertheless, we do not require a particular set

of assumptions; rather, we establish the mapping from each one or combination of these

auxiliary assumptions to the sharp identification set.

After discussing estimation and inference, we employ our framework to analyze the CS

data. Under our two auxiliary assumptions, we obtain an informative upper bound on the

returns to college selectivity and average ability. In particular, given the college character-

istics and the major composition, a 100 points increase in the average SAT score (roughly

the difference between Stanford and Boston College) leads to at most a 4.8% increase in

the average earnings 6 years after enrollment. Further, these upper bounds become smaller

when conditioning on the instructional expenditures per student and the completion rate.

Specifically, the upper bound on the return to selectivity drops to 2.8% per 100 average

SAT points. In addition, we obtain tight bounds on the financial returns to the character-

istics of the institution, student body, and affordability as well as the major composition,

instructional expenditures, and the completion rate and contrast these bounds with the re-

gression estimates. Last, we show how conditioning on the major composition reduces the

magnitude of the bounds on the effects of some university characteristics, such as the gender

composition or whether a university offers a graduate degree.

This paper is organized as follows. Section 2 specifies the data generating process and
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assumptions and introduces the notation. Section 3 studies the identification of the out-

come equation coefficients and the net of the covariates signal to total variance ratio in the

cases of classical measurement error (under the exclusion restriction) and differential mea-

surement error (without the exclusion restriction). It characterizes the joint and projected

sharp identification regions when none, either, or both of the auxiliary restrictions are im-

posed. Section 4 illustrates these identification results using a numerical example. Section

5 discusses estimation and inference. Section 6 applies our framework to analyzes the CS

data and to study the returns to college selectivity and characteristics. Section 7 concludes.

Mathematical proofs are gathered in the Appendix.

2 Data Generation and Assumptions

We consider the following data generating structural system.

Assumption A1 Data Generation: (i) Let (X
k×1

′, W
1×1
, Y

1×1
)′ be a random vector with a finite

variance. (ii) Let a structural system generate the random vector X and variables η, ε, U ,

W , and Y such that

Y = X ′β +Wφ+ Uδ + η (S)

W = U + ε (P )

with constant slope coefficients. The researcher observes realizations of (X ′,W, Y )′ but not

of (η, ε, U).

We are interested in identifying the slope coefficients δ, φ, and β in equation (S). These

are the ceteris paribus causal effects of the latent variable U , the proxy W , and the covariates

X on the outcome Y respectively. Note that A1 allows, but does not require, W to directly

affect Y . Further, A1 decomposes the proxy W (e.g. the average SAT score) into the “signal”

component2 U (e.g. the average ability) and the “noise” or error ε.

One difficulty for identification is due to U being unobserved and correlated with W and

possibly X. Nevertheless, we maintain two standard assumptions on the other unobservables

2Here, the structure Y = X ′β +Wφ+ V γ + η and W = V ψ + ε, with V unobserved, is observationally
equivalent to (S, P ). Provided the scale ψ 6= 0, only the ratio δ ≡ γ

ψ of the coefficients on V may be

(partially) identified. To ease the notation, we use the simpler representation that defines U ≡ V ψ.
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η and ε. In particular, A2 assumes that the “disturbance” η is uncorrelated3 with4 (X ′, U)′.

Assumption A2 Uncorrelated Disturbance: Cov[η, (X ′, U)′] = 0.

Further, the measurement error ε is uncorrelated with (X ′, U, η).

Assumption A3 Uncorrelated measurement error: Cov[ε, (X ′, U, η)′] = 0.

When φ = 0, A1-A3 are the classical error-in-variables assumptions (see e.g. Wooldridge,

2002, p. 80). In this case, additional restrictions on higher order moments of η, ε, U, and

X can point identify (β′, δ)′ (see e.g. Lewbel, 1997; Erickson and Whited, 2000). We do not

impose these stronger assumptions. Specifically, we study partial identification under the

weak uncorrelation5 assumptions A2-A3 and the linear specification in A1.

We relax these benchmark assumptions by not requiring the exclusion restriction6 that

sets φ = 0. This leads to a second difficulty for identification. In particular, it is widely as-

sumed in the literature that the measurement error is “nondifferential” so thatE(Y |X,W,U) =

E(Y |X,U) (see e.g. Bollinger, 1996; Mahajan, 2006; Lewbel, 2007; Hu, 2008; Wooldridge

(2002, p. 79) refers to this as the “redundancy condition”). Incorrectly assuming that the

measurement error is nondifferential may result in misleading inference on δ and β. Bound,

Brown, and Mathiowetz (2001, p. 3717) discuss several examples that “highlight the poten-

tial importance of differential measurement error.” Here, we have

E(Y |X,W,U)− E(Y |X,U) = [ε− E(ε|X,U)]φ+ E(η|X,W,U)− E(η|X,U)

so that, even when E(η|X,W,U) = E(η|X,U) and E(ε|X,U) = 0, E(Y |X,W,U) differs from

E(Y |X,U) by εφ and the measurement error is differential. We allow φ to be nonzero and

3The analysis can be generalized to be conditional on additional covariates; we forgo this for simplicity.
4Thus, a regression of Y on (1, X ′,W )′ would point identify (β′, φ + δ)′ had U been observed without

measurement error. In the case of classical measurement error with φ = 0, DiTraglia and Garcia-Jimeno
(2017) study a setting in which U , and the instruments for U , may be correlated with η. We leave studying
systems in which (X ′, U) are endogenous (i.e. correlated with η) and φ may be nonzero to other work.

5For example, if (η, ε) is mean independent of X then one may point identify β and δ by generating a
sufficient number of instruments as functions of X. In this case, one may also relax the parametric specifi-
cation in A1. We leave studying the identification of average effects under such stronger mean independence
assumptions to other work.

6Some papers study relaxing A2-A3 while maintaining the exclusion restriction φ = 0. For example,
Erickson (1993) assumes that Cov[(ε, η)′, (X ′, U)′] = 0 and relaxes the assumption Cov(ε, η) = 0 by imposing
a lower and upper bounds on Corr(ε, η). Also, Hyslop and Imbens (2001) assumes that W is an optimal
prediction of U and thus that ε is uncorrelated with W and correlated with U .
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study the consequences of deviating from the exclusion restriction, imposed in the classical

error-in-variables assumptions, on the identification7 of φ, δ, and β. For instance, this enables

us to study the return to college selectivity when the average SAT score W serves as a proxy

for the average scholastic ability U and may directly affect the average earnings Y .

We briefly note that if U , W , and ε are non-scalar vectors of the same dimension in A1-A3

then additional sign restrictions are needed to guarantee that non-trivial bounds exist for δ

and the elements of β even if one assumes that8 φ = 0 (see e.g. Klepper and Leamer, 1984;

Bollinger, 2003). To keep the scope of the analysis focused, we study relaxing the proxy

exclusion restriction in a linear equation with a scalar U and W and leave considering non-

linear or higher-dimensional generalizations, which may be technically and computationally

nontrivial, to other work.

2.1 Notation and Linear Projection

To shorten the notation, for generic random vectors A and B, we write:

σ2
A ≡ V ar(A) and σA,B ≡ Cov(A,B).

Further, when B and C are of equal dimension with σC,B nonsingular, we use the following

succinct notation for the linear instrumental variable (IV) regression estimand and residual

RA.B|C ≡ σ−1
C,BσC,A and ε′A.B|C ≡ [A− E(A)]′ − [B − E(B)]′RA.B|C

so that by construction E(εA.B|C) = 0 and Cov(C, εA.B|C) = 0. If B = C we obtain the

linear regression estimand RA.B ≡ RA.B|B and residual εA.B ≡ εA.B|B. For example, RY.X is

the vector of slope coefficients associated with X in a linear regression of Y on (1, X ′)′.

Last, for a scalar A, we let R2
A.B ≡ σ−2

A (σA,Bσ
−2
B σB,A) denote the population coefficient of

determination (R-squared) from a regression of A on B.

Under A1-A3, we have that Cov[(η, ε)′, X] = 0. Throughout, we also assume that V ar(X)

is nonsingular unless otherwise specified. Thus, by projecting W and

Y = X ′β +W (φ+ δ)− εδ + η (1)

7Our results complement the results in Imai and Yamamoto (2010) who study bounding the average effect
of a binary misclassified treatment on a binary outcome under alternative assumptions on the differential
measurement error.

8Here, W can be viewed as a proxy for both W and U . Then the assumption that the latent variables
(W,U) and the measurement error (0, ε) are uncorrelated, in e.g. Klepper and Leamer (1984) and Bollinger
(2003), fails.
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onto X, we obtain that RW.X = RU.X and

RY.X = β +RW.X(φ+ δ). (2)

Using the following shorthand notation for the residuals from a regression on (1, X ′)′:

Y ∗ ≡ εY.X , W ∗ ≡ εW.X , and U∗ ≡ εU.X ,

we employ the convenient system of projected linear equations:

Y ∗ = W ∗φ+ U∗δ + η, (S∗)

W ∗ = U∗ + ε, (P ∗)

in order to study the identification of φ, δ, and (φ+ δ). The identification region for β then

obtains from the identification region for (φ+ δ) using equation (2).

2.2 Auxiliary Restrictions

In addition to A1-A3, we consider two additional plausible restrictions R1 and R2 that weaken

two common benchmark assumptions. Unlike A1-A3, which we impose throughout the paper,

we do not require the auxiliary assumptions R1 and R2. Instead, we study the identification

gain that may result when the researcher imposes either one or both restrictions.

The first auxiliary restriction weakens the standard “no measurement error” assumption,

σ2
ε = 0, by imposing an upper bound κ on the net of X noise to signal ratio, i.e. the ratio

of the variances of ε and U∗ (see e.g. Klepper and Leamer (1984) who consider a similar

restriction in the case of classical measurement error with φ = 0).

Assumption R1 Bounded Net of X Noise to Signal Ratio: σ2
ε ≤ κσ2

U∗ where 0 ≤ κ.

For example, setting κ = 0 yields the no measurement error assumption σ2
ε = 0 and

setting κ = 1 assumes that, after projecting on X, the variance of the measurement error

is at most as large as the variance of U , σ2
ε ≤ σ2

U∗ . From A1-A3 and equation (P ∗), we

have σ2
W ∗ = σ2

U∗ + σ2
ε . Thus, R1 sets an upper κ

1+κ
on the share of σ2

W ∗ that is due to σ2
ε .

Equivalently, R1 sets a lower bound 1
1+κ

on ρ, the share of σ2
W ∗ (e.g. the variance of the

average SAT score, net of X) that is due to σ2
U∗ (e.g. the variance of the average ability, net

of X):
1

1 + κ
≤ ρ ≡ σ2

U∗

σ2
W ∗

=
σ2
U∗

σ2
U∗ + σ2

ε

.

9



We refer to ρ as the net of X “signal to total variance ratio.” Applying equation (20) in

DiTraglia and Garcia-Jimeno (2017) (see also Dale and Krueger, 2002, p. 1514) shows that

ρ ≡ σ2
U∗

σ2
W ∗

=
σ2
U − σU,Xσ−2

X σX,U

σ2
W − σW,Xσ

−2
X σX,W

=
R2
W.U −R2

W.X

1−R2
W.X

,

where we use σW,X = σU,X and R2
W.U =

σ2
U

σ2
W

. Specifically, the “reliability ratio” R2
W.U is a

weighted average of R2
W.X and 1 with weight ρ:

R2
W.U = (1− ρ)R2

W.X + ρ. (3)

Since 0 ≤ ρ ≤ 1, we have R2
W.X ≤ R2

W.U ≤ 1. If σ2
ε = 0 (no measurement error) then

ρ = 1 and R2
W.U = 1. Further, if σ2

U∗ = 0 (U and X are perfectly collinear) then ρ = 0

and R2
W.U = R2

W.X . It follows that R1 is equivalent to σ2
ε ≤ τσ2

U or 1
1+τ
≤ R2

W.U where

τ =
κ(1−R2

W.X)

1+κR2
W.X

. The closer one sets 1
1+τ

to R2
W.X in R2

W.X ≤ 1
1+τ
≤ R2

W.U , the worse U is

allowed to predict W (i.e. the larger σ2
ε and the smaller R2

W.U can be) and the better X is

allowed to predict U (i.e. the smaller σ2
U∗ and thus ρ in equation (3) can be).

A researcher can impose a lower bound on either R2
W.U or ρ. While fixing τ in σ2

ε ≤ τσ2
U

restricts the variance of the measurement error ε in W irrespective of X, fixing κ in σ2
ε ≤ κσ2

U∗

restricts the variance of ε relative to that of U∗ and thus to how well X predicts U . In

particular, τ determines that 1
1+τ
≤ R2

W.U whereas κ determines the minimum improvement

in R2
W.U over R2

W.X (e.g. for a given κ, the better the covariates predict the average SAT

score, the better one requires the average ability to predict the average SAT score). For

example, setting κ = 1 assumes that R2
W.U is at least half as close to 1 than R2

W.X is. We

employ R1 to conduct a sensitivity analysis by letting κ (or τ) range over a domain that

deviates from the no measurement error assumption κ = 0 (or τ = 0). Conversely, one may

study what value of κ is required for the identification region to admit an ex-ante plausible

value or range for δ or β. To keep the exposition concise, we impose R1 throughout the

analysis and understand the results under A1-A3 alone as a special case in which κ → +∞

and R1 is not binding.

The second auxiliary assumption that we study weakens the classical exclusion restriction

φ = 0 by specifying whether φ and δ have the same sign or the opposite sign (or are zero).

Assumption R2 Coefficient Sign Restriction: φδ ≥ 0 (R+
2 ) or φδ ≤ 0 (R−2 ).
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R+
2 (R−2 ) implies that U and W affect Y in the same (opposite) direction. For instance,

R+
2 allows for the possibility that both the college selectivity (i.e. the average SAT score) W

and the average ability U affect the average earnings Y positively.

3 Identification

We characterize the sharp identification regions for φ and δ as well as (φ+δ), and consequently

β = RY.X − RW.X(φ + δ), under A1-A3 alone, first under the exclusion restriction and then

without imposing it. Then, we additionally impose R1 or R2 (when φ may be nonzero) or

both. First, we digress briefly and consider the assumption that one element X1 of X is

excluded from the Y equation and may serve as an instrument for W . In this case, an IV

regression point-identifies the remaining coefficients on X as well as (φ+ δ).

Proposition 3.1 Assume A1 and let X = (X1, X
′
2)′ and β = (β1, β

′
2)′. Suppose that the

scalar β1 = 0, Cov[(η, ε)′, X] = 0, and Cov(X, (W,X ′2)′) is nonsingular. Then

(φ+ δ, β′2)′ = RY.(W,X′2)′|X .

Without exclusion restrictions on X or W , consider the moments V ar[(Y ∗,W ∗)′]. Under

A1-A3, using the expressions for σ2
W ∗ 6= 0 and σY ∗.W ∗ from the proof of Theorem 3.2 below,

we have that RY ∗.W ∗ is a weighted average of φ and (φ+ δ) with weight ρ:

RY ∗.W ∗ = φ(1− ρ) + (φ+ δ)ρ where ρ ≡ σ2
U∗

σ2
W ∗

=
σ2
U∗

σ2
U∗ + σ2

ε

. (4)

If there is no measurement error (σ2
ε = 0) then ρ = 1 and (φ+ δ) and β are point identified9,

(φ + δ, β′)′ = RY.(W,X′)′ . Further, if U∗ is degenerate (σ2
U∗ = 0 and U and X are perfectly

collinear) then ρ = 0 and φ is point identified, φ = RY ∗.W ∗ . In addition, using the expression

for σ2
Y ∗ from the proof of Theorem 3.2, we have that

σ2
Y ∗

σ2
W ∗

= φ2(1− ρ) + (φ+ δ)2ρ+
σ2
η

σ2
W ∗
, (5)

where, by definition, we have the inequality

0 ≤ ξ2 ≡
σ2
η

σ2
W ∗
. (6)

9Recall the regression representation RY.(W,X′)′ = (RY ∗.W∗ , R
′
Y.X −R′W.XRY ∗.W∗)′.
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When U and X are not perfectly collinear, i.e. ρ 6= 0, Theorem 3.2 employs equations

(4, 5) to express δ, β, and ξ2 as functions D, B, and C2 of (ρ, φ). This mapping permits

characterizing the joint sharp identification region for (ρ, φ, δ, β) in terms of restrictions

on (ρ, φ) only. It facilitates studying the consequences of deviating from the benchmark

assumptions of no measurement error (ρ = 1) or the proxy exclusion restriction (φ = 0).

Theorem 3.2 Assume A1-A3 and let V ar[(X ′,W )′] be nonsingular and 0 < ρ ≤ 1. Then

δ = D(ρ, φ) ≡ 1

ρ
(RY ∗.W ∗ − φ),

β = B(ρ, φ) ≡ RY.X −RW.X
1

ρ
[RY ∗.W ∗ − φ(1− ρ)], and

ξ2 = C2(ρ, φ) ≡ σ2
Y ∗

σ2
W ∗
− (1− ρ)

ρ
(φ−RY ∗.W ∗)

2 −R2
Y ∗.W ∗ .

3.1 Excluded Proxy: Classical Measurement Error

First, consider the special case in which φ = 0 and the measurement error is classical.

Then equation (4) implies that RY ∗.W ∗ = δρ and we obtain the classical “attenuation bias”

whereby RY ∗.W ∗ understates the magnitude of δ and has its sign. Further, when ρδ 6= 0,

and thus RY ∗.W ∗ 6= 0, equation (5) implies that 1
RW∗.Y ∗

= δ + ξ2

δρ
. It follows that δ can

be bounded in the interval with endpoints RY ∗.W ∗ and 1
RW∗.Y ∗

corresponding to ρ = 1 and

ξ2 = 0 respectively (see e.g. Gini, 1921; Frisch, 1934. For the case of a vector U , see e.g.

Klepper and Leamer, 1984; Bollinger, 2003). Corollary 3.3 collects these results and allows

imposing the auxiliary restriction10 R1 in addition to the classical assumptions A1-A3 with

φ = 0.

Corollary 3.3 Assume the conditions of Theorem 3.2 and suppose that R1 holds. If φ = 0

then (ρ, φ, δ, β) are partially identified in the sharp set

S1,c
ρ,φ,δ,β ≡

{
(r, 0, D(r, 0), B(r, 0)) :

1

1 + κ
≤ r ≤ 1 and 0 ≤ C2(r, 0)

}
.

10In the case of classical measurement error with multiple latent variables and excluded proxies, Klepper
and Leamer (1984) study imposing a common 1

1+τ bound on all the signal to total variance ratios. They
report non-sharp bounds on the vector of slope coefficients on the latent variables. See also Bekker, Kapteyn,
and Wansbeek (1987) who report tighter bounds.
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Further, ρ, δ, and β are partially identified in the sharp sets

S1,c
ρ = {λρ+ (1− λ) : 0 ≤ λ ≤ 1} where ρ ≡ max{RY ∗.W ∗RW ∗.Y ∗ ,

1

1 + κ
}

S1,c
δ = {RY ∗.W ∗ [λ+ (1− λ)

1

ρ
] : 0 ≤ λ ≤ 1}, and

S1,c
β = {RY.X −RW.XRY ∗.W ∗ [λ+ (1− λ)

1

ρ
] : 0 ≤ λ ≤ 1}.

Corollary 3.3 derives the sharp11 joint identification region for (ρ, φ, δ, β) as well as the

sharp12 identification regions (projections) for ρ, δ, and β separately. First, consider the cases

in which δ or β is point identified. In particular, if RY ∗.W ∗ = 0 then δ = 0 and β = RY.X .

Also, if RW.X = 0 then β = RY.X . Further, if κ = 0 then there is no measurement error

and we have that ρ = 1, δ = RY ∗.W ∗ , and β = RY.X − RW.XRY ∗.W ∗ . Otherwise, if κ→ +∞

so that R1 is not imposed then the bounds in Corollary 3.3 reduce to the standard sharp

bounds Scρ, Scδ , and Scβ which set ρ = RY ∗.W ∗RW ∗.Y ∗ ≥ 1
1+κ
→ 0. Corollary 3.3 demonstrates

how R1 can lead to tighter sharp bounds.

3.2 Included Proxy: Differential Measurement Error

The bounds in Corollary 3.3 fail when φ 6= 0. Corollary 3.4 employs (in)equalities (4-6) to

study the partial identification region for (ρ, φ, δ, β) when the measurement error may be

differential.

Corollary 3.4 Under the conditions of Theorem 3.2 and R.1, (ρ, φ, δ, β) are partially iden-

tified in the sharp sets

S1
ρ,φ,δ,β ≡

{
(r, f,D(r, f), B(r, f)) :

1

1 + κ
≤ r ≤ 1 and 0 ≤ C2(r, f)

}
.

Further, φ and δ are not identified, S1
φ = S1

δ = R, and ρ and β are partially identified in the

sharp sets

S1
ρ = [

1

1 + κ
, 1] and

S1
β = {RY.X −RW.X{RY ∗.W ∗ + λ[κ(

σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗)]
1
2} : −1 ≤ λ ≤ 1}.

11A joint identification region such as Sc,1ρ,φ,δ,β is sharp if for every (r, f, d, b) ∈ Sc,1ρ,φ,δ,β there exists (Ũ , η̃, ε̃)

that satisfy A.2-A.3 such that Y = X ′b+Wf + Ũd+ η̃, W = Ũ + ε̃, and
σ2
Ũ∗

σ2
W∗

= r.
12A projected identification region such as Sc,1β is sharp if for every b ∈ Sc,1β there exists (r, f, d, b) ∈ Sc,1ρ,φ,δ,β .
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Under R1, the joint sharp identification region S1
ρ,φ,δ,β is informative about (ρ, φ, δ, β)

since it rules out13 certain elements (r, f, d, b) of (0, 1] × Rk+2. Corollary 3.4 shows that if

RW.X = 0 then RY.X point identifies β. Further, if either κ = 0 (i.e. ρ = 1 and there is no

measurement error) or 1
σ2
W∗
V ar(εY ∗.W ∗) =

σ2
Y ∗

σ2
W∗
−R2

Y ∗.W ∗ = 0 (i.e. εY ∗.W ∗ = 0), we have that

β = RY.X−RW.XRY ∗.W ∗ . Using the expressions for δ and 0 ≤ ξ2 from Theorem 3.2, note that

εY ∗.W ∗ = 0 implies that either ρ = 1 or δ = 0. When these point identification conditions do

not hold and R1 is not imposed (i.e. when κ → +∞), projecting S1
ρ,φ,δ,β onto the support

(0, 1] of ρ and the support R of φ, δ, and βj for j = 1, ..., k yields uninformative bounds (the

full support). On the other hand, imposing R1 yields two-sided sharp bounds S1
ρ and S1

β

on ρ and β but φ and δ remain unidentified. Thus, R1 permits studying the sensitivity of

β to deviations from the “no measurement error” assumption κ = 0. Last, note that when

RY ∗.W ∗ 6= 0, S1
β can be conveniently expressed in terms of regression coefficients

S1
β = {RY.X −RW.XRY ∗.W ∗{1 + λ[κ(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2} : −1 ≤ λ ≤ 1}.

Next, we consider the second useful auxiliary assumption R2 which weakens the stan-

dard exclusion restriction φ = 0. We begin by examining R+
2 , φδ ≥ 0. Recall that

ρ ≡ max{RY ∗.W ∗RW ∗.Y ∗ ,
1

1+κ
}. Further, let E(r, f) ≡ fD(r, f) = 1

r
f(RY ∗.W ∗ − f).

Corollary 3.5 Under the conditions of Theorem 3.2, R1, and R+
2 , (ρ, φ, δ, β) is partially

identified in the sharp set

S1,2+

ρ,φ,δ,β ≡
{

(r, f,D(r, f), B(r, f)) :
1

1 + κ
≤ r ≤ 1, 0 ≤ C2(r, f), and 0 ≤ E(r, f)

}
.

Further, let Fκ ≡ 1
1+κ

(1 − 1
1+κ

) − RY ∗.W ∗RW ∗.Y ∗(1 − RY ∗.W ∗RW ∗.Y ∗). Then ρ, φ, δ, and β

are partially identified in the sharp sets

S1,2+

ρ = [
1

1 + κ
, 1],

S1,2+

φ = {λRY ∗.W ∗ : 0 ≤ λ ≤ 1},

S1,2+

δ =


{λRY ∗.W ∗ : 0 ≤ λ ≤ 1} if κ = 0

{λ(1 + κ)RY ∗.W ∗ [
1
κ
(1
ρ
− 1)]

1
2 : 0 ≤ λ ≤ 1} if Fκ ≤ 0 and 0 < κ

{λRY ∗.W ∗
1
ρ

: 0 ≤ λ ≤ 1} if 0 ≤ Fκ

, and

S1,2+

β = {RY.X −RW.XRY ∗.W ∗{1 + λ[κ(
1

ρ
− 1)]

1
2} : 0 ≤ λ ≤ 1}.

13For example, let (r, f) = (1
2 , (M+1)RY ∗.W∗). Then one can choose the constant M such that C2( 1

2 , (M+

1)RY ∗.W∗) =
σ2
Y ∗

σ2
W∗
− (M2 + 1)R2

Y ∗.W∗ ≤ 0.
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Corollary 3.5 shows that, under R1 and R+
2 , if RY ∗.W ∗ = 0 then φ, δ, and β are point

identified, φ = δ = 0 and β = RY.X . Further, if RW.X = 0 then β = RY.X and if κ =

0 or εY ∗.W ∗ = 0 then β = RY.X − RW.XRY ∗.W ∗ . Otherwise, imposing R+
2 alone (which

corresponds to κ → +∞, ρ = RY ∗.W ∗RW ∗.Y ∗ ≥ 1
1+κ
→ 0, and Fκ → −RY ∗.W ∗RW ∗.Y ∗(1 −

RY ∗.W ∗RW ∗.Y ∗) ≤ 0) yields the two-sided sharp bounds S2+

φ = S1,2+

φ for φ and the one-sided

sharp bounds S2+

δ = {λRY ∗.W ∗ : 0 ≤ λ} for δ and S2+

β = {RY.X − RW.XRY ∗.W ∗λ : 1 ≤ λ}

for β. Note that S2+

φ and S2+

δ identify the common sign of φ and δ. Also, S2+

β may rule

out that a component βj of β is zero, in which case the corresponding Xj variable cannot

serve as an instrument in Proposition 3.1. Moreover, Corollary 3.5 shows how imposing R1

and R+
2 yields bounded identification regions for ρ, φ, δ, and β that are tighter than those

obtained under either R1 or R+
2 alone. Last, observe that if ρ = 1

1+κ
< 1 then S1,2+

β = S1,c
β

and incorrectly assuming that φ = 0 (instead of 0 ≤ φδ) has no bearing on the sharp bounds

for β. However, this incorrectly leads to the region S1,c
δ ⊆ S

1,2+

δ which need not contain δ.

The last corollary studies the identifying power of R−2 , φδ ≤ 0.

Corollary 3.6 Under the conditions of Theorem 3.2, R1, and R−2 , (ρ, φ, δ, β) is partially

identified in the sharp set

S1,2−

ρ,φ,δ,β ≡
{

(r, f,D(r, f), B(r, f)) :
1

1 + κ
≤ r ≤ 1, 0 ≤ C2(r, f), and E(r, f) ≤ 0

}
.

Further, ρ, φ, δ, and β are partially identified in the sharp sets

S1,2−

ρ = [
1

1 + κ
, 1], S1,2−

φ = S1,2−

δ =

{
{λRY ∗.W ∗ : λ 6∈ (0, 1)} if RY ∗.W ∗ 6= 0

R if RY ∗.W ∗ = 0
,

and if ρ = 1
1+κ

then S1,2−

β = S1
β whereas if ρ = RY ∗.W ∗RW ∗.Y ∗ then

S1,2−

β = {RY.X −RW.XRY ∗.W ∗{λ
1

ρ
+ (1− λ)[1− (κ(

1

ρ
− 1))

1
2 ]} : 0 ≤ λ ≤ 1}.

Under R1 and R−2 , if RW.X = 0 or RY ∗.W ∗ = 0 then β = RY.X and if κ = 0 or εY ∗.W ∗ = 0

then β = RY.X −RW.XRY ∗.W ∗ . Further, the sharp identification regions for φ and δ obtained

under R−2 alone (i.e. when κ → +∞) coincide with those obtained under R1 and R−2 ,

S2−

φ = S2−

δ = S1,2−

φ = S1,2−

δ . This is a disconnected identification region which rules out that

φ or δ is in the open interval with end points14 0 and RY ∗.W ∗ . Moreover, under R−2 only, we

14Although we do not pursue this here, we note that, unlike in Corollary 3.5, one may tighten the bounds
in Corollary 3.6 by assigning a specific sign to φ and the opposite sign to δ.
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obtain a one-sided sharp bound on β, S2−

β = {RY.X−RW.X
1

RW∗.Y ∗
λ : λ ≤ 1}. Last, the sharp

identification region S1,2−

β for β, obtained under R1 and R−2 , is tighter that the identification

region S1
β, obtained under R1, only if 1

1+κ
≤ RY ∗.W ∗RW ∗.Y ∗ .

4 Illustrative Example

It is instructive to consider an example that illustrates the shape of the identification regions

in Section 3. Specifically, let X, Y , and W be generated, according to A1, by

Y = X ′β +Wφ+ Uδ + η, X ′ = Uϕ+ η′X , and W = U + ε,

where X
2×1

= (X1, X2)′. Further, let U, η, ε, and ηX be jointly independent and normally

distributed with mean zero so that A2 and A3 hold. We allow the components of ηX =

(ηX1 , ηX2)
′ to be correlated. It follows that (X ′, Y,W )′ is normally distributed and we can

analytically express the identification regions for ρ, φ, δ, and β in Section 3 in terms of the

elements of V ar[(U, η, ε, η′X)′]. To illustrate these identification regions, we set β = (1, 0.7)′,

φ = 0.5, δ = 0.9, and ϕ = (0.35, 0.14). Since 0 < φδ, R+
2 holds. Also, we set σ2

U = 3,

σ2
η = 0.24, σ2

ε = σ2
ηX1

= σ2
ηX2

= 1, and σηX1
,ηX2

= 0.2. We obtain that ρ = 0.685.

Figure 1 illustrates the joint identification regions S1,c
ρ,φ,δ,β, S1

ρ,φ,δ,β, S1,2+

ρ,φ,δ,β, and S1,2−

ρ,φ,δ,β ob-

tained under this parametrization. Specifically, we illustrate these five-dimensional regions

by plotting their projections onto the (φ, ρ), (φ, δ), and (β1, β2) spaces15. Each graph in Fig-

ure 1 superimposes the 4 projected identification regions that correspond to κ = +∞, 2, 1, 0.5

(here the net of X noise to signal ratio σ2
ε

σ2
U∗

= 0.461). The darker intersections correspond to

the smaller κ values and are nested within the lighter regions. Sometimes the identification

regions displayed in Figure 1 are unbounded. For example, S1
β1,β2

is an unbounded line when

κ = +∞ whereas S1,2+

ρ,φ is a bounded set when κ = 1. Figure 1 illustrates how the vector of

true population coefficients (ρ, φ, δ, β) (that we label using a cross) is an element of the joint

sharp identification regions S1
ρ,φ,δ,β and S1,2+

ρ,φ,δ,β. On the other hand, neither φ = 0 nor φδ ≤ 0

holds and the sharp regions S1,c
ρ,φ,δ,β and S1,2−

ρ,φ,δ,β do not contain (ρ, φ, δ, β). Also, Figure 1

15Recall, from Theorem 3.2, that the joint identification regions S1,c
ρ,φ,δ,β , S1

ρ,φ,δ,β , S1,2−

ρ,φ,δ,β , and S1,2+

ρ,φ,δ,β

depend only on the two unknowns (ρ, φ). To draw the graphs in Figure 1, we first compute the population
(in)equalities (as a function of (ρ, φ)) that determine the joint identification regions. We then use a grid
search over the (ρ, φ) space to approximate these joint regions. Last, we project the grids for these joint
regions onto each of the (φ, ρ), (φ, δ), and (β1, β2) two-dimensional spaces.
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demonstrates how S1,c
ρ,φ,δ,β is a subset of both S1,2−

ρ,φ,δ,β and S1,2+

ρ,φ,δ,β, which in turn are subsets of

S1
ρ,φ,δ,β. Last, it illustrates how S1,2−

ρ,φ,δ,β is disconnected and S1,2−

ρ,φ,δ,β ∪ S
1,2+

ρ,φ,δ,β = S1
ρ,φ,δ,β.

Table 1 illustrates the regression estimands and the projected identification regions from

Corollaries 3.3, 3.4, 3.5, and 3.6 for κ = +∞, 2, 1, 0.5. Thus, the bounds in Table 1 correspond

to the regions from Figure 1, projected onto the ρ, φ, δ, β1, and β2 spaces. Column 1 reports

the slope estimands from a regression of Y on (1,W,X ′)′. These estimands would identify

(φ, β) had δ been zero. Columns 2, 3, 4, and 5 report the sharp bounds for ρ, φ, δ, and β

under R1 and the incorrect assumption φ = 0 (column 2), under R1 only (column 3), under

R1 and R+
2 (column 4), and under R1 and the incorrect assumption R−2 (column 5). Note

that, in this example, S1,c
δ and S1,c

β as well as S1,2−

δ and S1,2−

β do not contain δ and β. Also,

since ρ = RY ∗.W ∗RW ∗.Y ∗ = 0.833 for κ = +∞, 2, 1, 0.5, S1,c
ρ,φ,δ,β remains the same at these κ

values. Since 0 ≤ Fκ for κ = 2, 1, 0.5, S1,2+

δ is also identical at these κ values16. Last, S1,2+

ρ,φ,δ,β

improves substantially over S1
ρ,φ,δ,β and both regions become tighter as κ decreases.

5 Estimation and Inference

Each of the identification sets17 for ρ, φ, δ, and βj for j = 1, ..., k in Corollaries18 3.3, 3.4, 3.5,

and 3.6 is of the form Sθ={θ(R;λ) : λ ∈ Λ} where θ(·;λ) is a function of the estimands19

R ≡ (R′Y.(W,X′)′ , R
′
W.(Y,X′)′ , R

′
Y.X , R

′
W.X ,

σ2
Y ∗

σ2
W ∗

)′

and λ is a nuisance parameter that is partially identified in a known set Λ. For example, the

identification set S1,2+

β from Corollary 3.5 can be written as

S1,2+

β = {β1,2+(R;λ) : λ ∈ Λ} ≡ {RY.X −RW.XRY ∗.W ∗{1 + λ[κ(
1

ρ
− 1)]

1
2} : λ ∈ [0, 1]}.

16Consider slightly changing this parametrization to set σ2
η = 2 and let κ = +∞, 2, 1, 0.5. Then ρ = 1

1+κ

when κ = 0.5, leading S1,c
ρ,φ,δ,β to become tighter at this κ value. Further, Fκ ≤ 0 at κ = +∞, 2, 0.5 and S1,2+

δ

shrinks as κ decreases. In this case, while S1,c
ρ,φ,δ,β and S1,2−

ρ,φ,δ,β do not contain the true population coefficients

vector (ρ, φ, δ, β), S1,c
β and S1,2−

β happen to include β = (1, 0.7)′ for all these κ values.
17Here, we focus on the estimation of the (projected) identification regions for ρ, φ, δ, and βj for j = 1, ..., k.

To estimate the joint identification regions for (ρ, φ, δ, β), one can consider using the procedures in e.g. Kline
and Tamer (2015) or Shi and Shum (2015).

18We omit the standard asymptotic distribution of the IV plug-in estimator for Proposition 3.1.
19If one supposes that RY ∗.W∗ 6= 0 then S1

β can expressed in terms of regression coefficients only and it
suffices to set R ≡ (R′Y.(W,X′)′ , R

′
W.(Y,X′)′ , R

′
Y.X , R

′
W.X)′.

17



We estimate an identification region Sθ consistently using Ŝθ={θ(R̂;λ) : λ ∈ Λ} where R̂

denotes the plug-in estimator for R:

R̂ ≡ (R̂′Y.(W,X′)′ , R̂
′
W.(Y,X′)′ , R̂

′
Y.X , R̂

′
W.X ,

∑n
i=1 ε̂

2
Y.X,i∑n

i=1 ε̂
2
W.X,i

)′.

Specifically, given observations {Ai, Bi}ni=1 corresponding to random column vectors A and

B, let Ā ≡ 1
n

∑n
i=1 Ai and denote the linear regression estimator and sample residual by:

R̂A.B ≡ [
1

n

n∑
i=1

(Bi−B̄)(Bi−B̄)′]−1[
1

n

n∑
i=1

(Bi−B̄)(Ai−Ā)′] and ε̂′A.B,i ≡ (Ai−Ā)′−(Bi−B̄)′R̂A.B.

Standard arguments show that the estimator R̂ for R is
√
n consistent and asymptotically

normally distributed. For this, let µ2
A = E(AA′) and define the 7+4k square diagonal matrix

Q ≡ diag{µ2
(1,W,X′)′ , µ

2
(1,Y,X′)′ , µ

2
(1,X′)′ , µ

2
(1,X′)′ , σ

2
W ∗}.

Theorem 5.1 Assume A1(i) and that Q is nonsingular. Suppose further that:

(i) 1
n

∑n
i=1(1, Yi,Wi, X

′
i)
′(1, Yi,Wi, X

′
i)

p→µ2
(1,Y,W,X′)′ and

(ii) n−1/2

n∑
i=1


(1,Wi, X

′
i)
′εY.(W,X′)′,i

(1, Yi, X
′
i)
′εW.(Y,X′)′,i

(1, X ′i)
′εY.X,i

(1, X ′i)
′εW.X,i

ε2Y.X,i − σ2
Y ∗

 d→N(0,Ξ) where Ξ ≡ V ar


(1,W,X ′)′εY.(W,X′)′
(1, Y,X ′)′εW.(Y,X′)′

(1, X ′)′εY.X
(1, X ′)′εW.X

ε2Y.X

 .
Then

√
n(R̂−R)

d→N(0,Γ) where Γ obtains by removing the 1, 3 +k, 5 + 2k, and 6 + 3k rows

and columns from Γ∗ ≡ Q−1ΞQ′−1.

See e.g. White (2001) for standard primitive conditions for the law of large numbers and

central limit theorem in Theorem 5.1. We estimate Γ using the relevant submatrix of the

plug-in estimator Γ̂∗ ≡ Q̂−1Ξ̂Q̂′−1 where Ξ̂ is a heteroskedasticity-robust estimator for Ξ (see

e.g. White, 1980). For example, we estimate V ar(XεY.X) using 1
n

∑n
i=1Xiε̂Y.X,i, ε̂Y.X,iX

′
i.

In Section 3, the function θ(R;λ) for an identification region Sθ sometimes depends on

the signs of Gκ ≡ 1
1+κ
− RY ∗.W ∗RW ∗.Y ∗ (i.e. the value of ρ) and Fκ ≡ 1

1+κ
(1 − 1

1+κ
) −

RY ∗.W ∗RW ∗.Y ∗(1 − RY ∗.W ∗RW ∗.Y ∗). Let rY ∗.W ∗ ≡ σY ∗.W∗
σY ∗σW∗

denote the partial correlation be-

tween Y and W given X. Then 0 ≤ Gκ if and only if rY ∗.W ∗ ∈ [−( 1
(1+κ)

)
1
2 , ( 1

(1+κ)
)
1
2 ]. Further,

Fκ < 0 if and only if |rY ∗.W ∗| belongs to the open line segment with end points ( 1
(1+κ)

)
1
2 and

( κ
1+κ

)
1
2 . Suppose that the signs of Gκ and Fκ are known then one can construct a 1−α (e.g.
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95%) confidence interval C1−α(λ) for θ(R;λ) for each λ ∈ Λ using the delta method. Further,

a confidence region CRθ
1−α for a partially identified parameter θ ∈ Sθ obtains by applying

Proposition 2 of Chernozhukov, Rigobon, and Stoker (2010) and forming the union:

CRθ
1−α =

⋃
λ∈Λ

C1−α(λ).

In applications, the signs ofGκ and Fκ, or alternatively the value of rY ∗.W ∗ , must be estimated

and CRθ
1−α must be adjusted to account for this estimation. In particular, the projected

identification regions from Section 3 can be rewritten in the form Sθ={θ̃(R; π) : π ∈ Π}

where π = (λ, r̃) ∈ Λ × {rY ∗.W ∗} determines the signs of Gκ(r̃) and Fκ(r̃), with θ̃(·; π)

continuously differentiable in R. For example, we have

S1,2+

β = {β̃1,2+(R; π) : π ∈ Π}

≡ {RY.X−RW.XRY ∗.W ∗{1+λ{κ[
1

RY ∗.W ∗RW ∗.Y ∗
1{Gκ(r̃) < 0}+(1+κ)1{0 ≤ Gκ(r̃)}−1]}

1
2}

: (λ, r̃) ∈ [0, 1]× {rY ∗.W ∗}}.

Using the delta method, the plug-in estimator θ̃(R̂; π) for an element θ̃(R; π) of Sθ is consistent

and has a
√
n asymptotic normal distribution20

√
n(θ̃(R̂; π)− θ̃(R; π))

d→N(0,∇Rθ̃(R; π)Γ∇Rθ̃(R; π)′).

This permits constructing a 1−α1 confidence interval C1−α1(π) for θ̃(R; π) for each π ∈ Π. To

obtain a 1−α1−α2 (e.g. 95%) confidence region CRθ
1−α1−α2

for θ ∈ Sθ, one can construct the

confidence intervals CRr̃
1−α2

for rY ∗.W ∗ and apply Proposition 3 of Chernozhukov, Rigobon,

and Stoker (2010) to form the union21:

CRθ
1−α1−α2

=
⋃

π∈Λ×CRr̃1−α2

C1−α1(π).

20The expressions for the gradients ∇Rθ̃(R;π) for Corollaries 3.3-3.6 are omitted for brevity and are
available from the authors upon request.

21We construct the confidence intervals for φ ∈ S1,2−

φ and δ ∈ S1,2−

δ similarly, by writing these sets in the

form Sθ={θ̃(R;π) : π ∈ Π} with π = (λ, r̃) ∈ Λ× {RY ∗.W∗}.
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To construct CRr̃
1−α2

we use the “Fisher z” variance stabilizing transformation22 (see e.g.

van der Vaart, 2000, p. 30-31). In the empirical analysis in Section 6, rY ∗.W ∗ is precisely

estimated and Gκ and Fκ do not change signs for all elements r̃ ∈ CRr̃
1−α2

under a range

of values for α2 and κ. In this case, α2 can be made very small and the adjustment in

CRθ
1−α1−α2

is negligible. In particular, we set α1 = 0.4999 and α2 = 0.0001.

6 The Returns to College Selectivity and Characteris-

tics

Several papers study the returns to college selectivity and characteristics. On the one hand,

some studies provide evidence for a positive return to college quality. For example, Brewer,

Eide, and Ehrenberg (1999) model how students choose a college and find a significant wage

premium (e.g. six years after high school graduation) to attending an elite private college.

Also, using propensity score matching, Black and Smith (2004) find that college quality has

a positive, albeit sometimes imprecisely estimated, effect on wage. Further, when comparing

the earnings of individuals around the admission cutoff point, Hoekstra (2009) finds that

attending a flagship state university leads to 20% higher earnings for white men 10 to 15

years after high school graduation. On the other hand, other studies do not find strong

evidence for a large return to college selectivity. For example, Dale and Krueger (2002)

find that students who attend varyingly selective colleges after being admitted to equally

selective colleges earn comparably. Dale and Krueger (2002, 2014) report similar findings

using a “self-revelation” model in which a student’s college application behavior (e.g. the

average SAT score of the colleges to which the student applied) reveals his or her unobserved

ability. Further, Kirkeboen, Leuven, and Mogstad (2016) find that the effect of attending

a more selective institution is small relative to the substantial effect that the field of study

has on earnings.

We contribute to this literature by applying this paper’s framework to analyze the recently

22Let r̂Y ∗.W∗ ≡
∑n

i=1 ε̂Y.X,iε̂W.X,i

(
∑n

i=1 ε̂
2
Y.X,i)

1
2 (

∑n
i=1 ε̂

2
W.X,i)

1
2

and Z(r̃) ≡ 1
2 log( 1+r̃

1−r̃ ). Under normality of (Y ∗,W ∗), we have

√
n(Z(r̂Y ∗.W∗) − Z(rY ∗.W∗))

d→ N(0, 1). To construct CRr̃1−α2
, we use this approximation and apply the

inverse transformation r̃ = e2z−1
e2z+1 to the end points of the 1 − α2 confidence interval for Z(rY ∗.W∗). An

alternative uses the delta method to derive the asymptotic distribution of
√
nR̂Y ∗.W∗R̂Y ∗.W∗ and construct

a confidence interval for r2
Y ∗.W∗ = RY ∗.W∗RY ∗.W∗ , in order to infer the sign of Gκ and Fκ.
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released College Scorecard (CS) data. We specify a parsimonious model for the logarithm

of the average earnings of a cohort as a function of the college selectivity (i.e. the cohort’s

average SAT score), a rich set of college characteristics, and the cohort’s average unobserved

ability. We allow the average unobserved ability to freely statistically depend on the college

characteristics. Further, we let the average SAT score serve a second role as an error-laden

proxy for the average unobserved ability. Thus, this model decomposes the average SAT score

into the average ability, as the signal component, and a classical measurement error. In what

follows, we report tight bounds on the returns to the college selectivity and characteristics as

well as the average ability. Moreover, we study the sensitivity of these bounds to two types of

restrictions. The first restricts the extent of the measurement error in how the average SAT

score proxies the average ability. The second restricts the effects of the college selectivity

and the average ability on the average earnings to have the same sign.

6.1 College Scorecard Data Description

CS reports data on several dimensions of the quality of higher education in the US. The data

on these variables are aggregated at the institution level and drawn from various sources in-

cluding the Integrated Postsecondary Education Data System (IPEDS), National Student

Loan Data System (NSLDS), and administrative earnings data from tax records maintained

by the Department of Treasury. In particular, CS reports data on the institution charac-

teristics, student demographic and socioeconomic characteristics, admission and academic

attributes, affordability, as well as earnings outcomes.

While CS is detailed and nationally comprehensive, it has some limitations that arise

due to data unavailability or aggregation. First, the data based on NSLDS and tax records

cover only “Title IV” undergraduate students. This subpopulation of students who receive

federal aid may differ from the general population. Nevertheless, the Title IV subpopulation

amounts to roughly “seventy percent of all graduating postsecondary students” and seems

“reasonably similar to the overall population of a school in terms of student characteristics”

(Council of Economic Advisors, 2015 (thereafter CEA), p. 26-27). Second, CS employs the

IPEDS definition of an institution. Although “about two-thirds of institutions, collectively

enrolling 83 percent of students, have only one main campus identifier” (CEA, p. 29),

complex institutions with multiple branches may differ in how they aggregate and report
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data23. Third, CS uses various student cohort definitions that “are imperfect and vary for

different metrics” (CEA, p. 30). For example, the mean earnings variable is based on

non-enrolled Title IV students who are working 6 years after estimated college entry and

this average is reported for a pooled cohort across two consecutive entry years (e.g. the

2006-2007 and 2007-2008 entry cohorts). On the other hand, the average annual total cost

of attendance is based on all full-time, first-time, degree-seeking Title IV undergraduate

students who first enrolled in an institution during the academic year (e.g. 2010-2011). The

extent to which this inconsistency in cohort definitions can impact our estimates depends, in

part, on whether the aggregate features of these variables remains stable in the short run24.

Here, we do not directly address these data imperfections and focus instead on the potential

measurement error in how the average SAT score25 measures the average scholastic ability.

We refer the reader to the CS data documentation webpage26 and to the CEA report for a

detailed account of the CS data.

6.2 Definition of Variables and Sample Selection

We focus on the most recent cohort of students on which data is available. This is the cohort

of students who enrolled in an academic institution in the fall27 of 2007, graduated with

a bachelor’s degree in the spring of 2011, and were non-enrolled and working28 in29 2013.

23For example, the data on the mean earnings are aggregated at the level of each of the 13 branches of
the University of Wisconsin whereas they are aggregated across the 23 branches of the Pennsylvania State
University (see CEA, p. 29).

24For example, Black and Smith (2004, p. 105) state that variables related to college quality “change only
very slowly, so utilizing values from a single point in time adds little measurement error.”

25We use data on SAT AVG, drawn from IPEDS, for the average SAT score. The CS data dictionary defines
SAT AVG as the “average SAT equivalent score of students admitted” but does not provide a formula for
how this is calculated. CEA, p. 42 states that “data from IPEDS are used to form average SAT score
equivalents using reported ranges for ACT and SAT scores.” We believe that this refers to the IPEDS data
on the first and third quartiles of the SAT and ACT scores of the enrolled students.

26https://collegescorecard.ed.gov/data/documentation/
27CS covers the time period from 1996 to 2015. The CS 2012-13 data file contains the most recent data on

earnings for the pooled cohorts that enrolled in Fall 2006 or Fall 2007. We use this earnings data together
with data on other variables that pertain to the 2007 cohort. Also, we obtain generally similar results when
we use the 2006-2007 pooled earnings data with the variables that pertain to the 2006 cohort instead.

28We set the average earnings as the main outcome variable of interest. We also examine setting, as the
outcome variable, the share of individuals, including those with 0 earnings, who are non-enrolled and earning
more than $25, 000 per year, six years after enrolling in an institution. Although less sizeable and informative
for some coefficients, these bounds share similar features and directionality with the mean earnings results.
For brevity, we forgo analyzing these results in detail.

29We study the short run financial returns to college quality. This focuses on non-enrolled individuals who
are working 6 years after enrollment. It is also of interest to distinguish these short run effects from the
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CS reports yearly data files which contain institution-level aggregate data that need not

correspond to a specific student cohort. We proceed by drawing, from several CS data files,

the data that we think is the most representative of the 2007 student cohort30. To ease the

exposition, we sometimes omit referencing the details of the CS data construction. Instead,

we refer the reader to Table 9 which defines the variables that we employ in our analysis and

specifies the CS variable(s) that we use in constructing each of our variables. Further, Table

9 specifies the level of aggregation used in reporting each CS variable and the CS data file

from which it is drawn.

We restrict our sample to the main campus of bachelor’s degree granting institutions

that are either public or private non-profit. This yields a sample of 1710 institutions. After

dropping observations with missing data31, we obtain a sample of 1165 institutions. Table 2

reports summary statistics for the key variables that we employ in our analysis. For example,

the average SAT score is 1052.76 and the minimum and maximum average scores are 726

and 1491. The 5 most selective institutions in our sample are Harvard, Princeton, Yale,

MIT, and Dartmouth. The 5 most selective public institutions in our sample are College of

William and Mary, Georgia Institute of Technology, SUNY College at Geneseo, University

of Virginia, and University of Michigan-Ann Arbor. The standard deviation of SATAvg is

119.93, which corresponds roughly to the difference between Stanford and the University

of Virginia. Although our analysis incorporates in X all the institutional characteristics

that fall below the dividing line in Table 2, for brevity, we do not report estimates of the

identification regions for the coefficients on these variable (the confidence regions for these

coefficients often contain zero).

long run effects that may be channeled via attending graduate school or accumulating work experience. For
instance, for the cohort of students who enrolled in the fall of 2002 and graduated with a bachelor’s degree
in the spring of 2006, we obtain generally similar results when setting the outcome to be the mean earnings
of those who were non-enrolled and working in either 2008 (6 years after enrollment) or in 2013 (10 years
after enrollment). We leave a detailed study of the dynamic aspects of the returns to college selectivity and
characteristics to other work.

30We merge data on variables that are relevant to the 2007 cohort from 6 CS data files for the years
2007-08, 2010-11, 2011-12, 2012-13, 2013-14, and 2014-15.

31We drop 27 institutions that were missing from at least one of the CS data files that we consider. Among
the remaining 1683 institutions that appear in all CS data files, 378 institutions are missing data on SATAvg.
Among the remaining 1305 institutions, 21 are missing MnEarnWnEP6/Gt25KP6, 28 are missing Female,
45 are missing Dependent, 50 are missing ParEdPctPS, 1 is missing CostT4, 1 is missing NPT4, 31 are
missing GDebtMdn, and 3 are missing RelAffilInd. Last, we drop 3 institutions with negative NPT4.
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6.3 Estimates for the Returns to College Selectivity and Charac-
teristics

Using the sample of 1165 institutions, we report regression estimates as well as bounds that

account for classical or differential measurement error in how the average SAT score proxies

the average ability. Throughout, Y denotes the logarithm of the average earnings 6 years

after enrollment and W denotes the average SAT score (i.e. the college selectivity) which

serves as an “included” proxy for the average unobserved ability U . We consider three

nested settings for X, described next. These include important college characteristics that

have been discussed in the literature.

In the first specification, X consists of characteristics that pertain to the (1) institution,

(2) student body, and (3) affordability. In particular, X includes the following institution

characteristics: 8 region indicators and 11 locale indicators32 for the institution’s location,

indicators for whether the institution is minority-serving, a women-only college33, has a re-

ligious affiliation, or awards a graduate degree, and an indicator for the institution’s control

(public versus private nonprofit). Further, X includes the following student body charac-

teristics: the logarithm of the student population, the shares of each available race category

(Black, Hispanic, Asian, American Indian/Alaska Native, Native Hawaiian/Pacific Islander,

two or more races, race is unknown, and non-resident alien, and we omit from X the share

of students who are white as the reference group), the shares of students how are female,

dependent, and with at least one post-secondary educated parent, as well as the logarithm

of the average family income. Last, X includes these affordability characteristics: the loga-

rithms of the average cost of attendance and average net price, the shares of students with

a federal student loan and with a Pell grant, and the logarithm of the median student debt.

The first specification does not account for the composition of majors at each institution.

However, the choice of major plays an important role in understanding the labor market out-

comes (see e.g. Altonji, Arcidiacono, and Maurel, 2016; Kirkeboen, Leuven, and Mogstad,

2016). As such, the apparent effects in the first specification, may partly reflect that insti-

tutions with a particular selectivity and characteristics profile may be more specialized in

majors that yield high (or low) labor market returns. To account for this possibility, the

32The sample does not contain US service schools (Region0) and we leave out, as reference groups, the
indicator for the Plains region (Region4) and the the indicator for the rural remote locale (Locale43).

33The sample does not contain men-only colleges.
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second specification augments X to include, in addition to the covariates in the first speci-

fication, the percentage of degrees awarded in each field of study in our sample34 according

to the Classification of Instructional Programs (CIP).

Last, we also examine some of the mechanisms that may explain the return to college

selectivity. In particular, in addition to the variables from the second specification, the third

specification includes in X the instructional expenditures per student and the completion

rate within 150% of expected graduation time.

In the empirical analysis, we sometime assume R1 (σ2
ε ≤ κσ2

U∗) to impose an upper bound

on the net of X noise to signal ratio. In this case, we set κ = 1 as our default restriction. This

assumes that at most (at least) half of the variance in W ∗, i.e. the average SAT score net of

the college characteristics X, is due to measurement error ε (U∗, i.e. the average ability net

of X). Specifically, in the above three specifications, R2
W.X is estimated to be 0.8183, 0.8612,

and 0.8893 respectively. Setting κ = 1 assumes that R2
W.U is at least half as close to 1 than

R2
W.X is. We also obtain qualitatively similar results when we use the estimate for R2

W.X to

set κ such that35 0.9 = 1
1+τ
≤ R2

W.U . More generally, Section 6.4 studies the consequences of

varying the value of κ on the bounds estimates. In particular, we let κ range from 0 to 30,

allowing the variance of U∗ to account for either all (κ = 0) or almost none (κ = 30) of the

variance of W ∗.

6.3.1 Estimates given Institution, Student, and Cost Characteristics

Table 3 presents the results under the first specification. This accounts for the institution,

student, and affordability characteristics and serves as a basis of comparison with the results

in Section 6.3.2 which further account for the composition of majors. Column 1 reports the

regression estimates R̂Y.(W,X′)′ along with 95% confidence intervals in parentheses. Under

the first specification, R̂Y.(W,X′)′ consistently estimates the returns to college selectivity and

characteristics φ and β if the average ability does not directly affect the average earnings, i.e.

δ = 0. Column 2 reports the bounds under R1 in the classical measurement error case. This

allows the average ability U , but not selectivity W , to directly affect the average earnings

34There is a total of 38 CIP fields of study. Among these, our sample includes 37 fields listed in Table 6
(PCIP29, the percentage of degrees awarded in Military Technologies and Applied Sciences, is always zero).
Further, we choose PCIP45 (Social Sciences) as the reference field of study and omit it from X.

35This sets κ equal to 1.22, 2.58, and 9.35 in the first, second, and third specifications respectively.
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(i.e. δ may be nonzero whereas φ = 0). Columns 3 and 4 allow for differential measurement

error by removing the exclusion restriction φ = 0 so that both the college selectivity and the

average ability can affect the mean earnings. Column 3 reports the results under R1 whereas

column 4 reports the results under R1 and R+
2 , when the college selectivity and the average

ability can affect the average earnings in the same direction, φδ ≥ 0. For brevity, we omit

the results under R+
2 (recall that S2+

φ = S1,2+

φ and that S2+

δ and S2+

βj
are half open intervals

which identify the sign of δ and possibly that of βj). Further, we do not report the results

under R1 and R−2 (φδ ≤ 0) since we deem it plausible that selectivity and average ability

affect mean earnings positively, φ ≥ 0 and δ ≥ 0.

As shown36 in Table 3, under the first specification, if δ = 0 then the regression coeffi-

cient R̂Y.(W,X′)′ in column 1 estimates that a 100 point increase in SATAvg leads to a 5.1%

approximate increase in the average earnings 6 years after enrollment, with a 95% confidence

region CR0.95 (3.6%, 6.6%). Under R1 and φ = 0, selectivity is assumed to not affect the

average earnings and the estimated bounds in column 2 on the return to a 100 point increase

in the average ability U are [5.1%, 10.2%] with CR0.95 (3.6%, 13.15%). When selectivity may

affect the mean earnings, the returns to selectivity and the average ability are not identified

under R1 only, as shown in column 3. However, together R1 and R+
2 yield informative upper

bounds on φ and δ. In particular, the estimated identification regions in column 4 for the

ceteris paribus return to a 100 point increase in SATAvg or U are [0, 5.1%], with CR0.95

(0, 6.6%), and [0, 10.2%], with CR0.95 (0, 13.2%), respectively.

Next, consider the returns to the college characteristics X. First, note that r̂Y ∗.W ∗ =

0.2070 with 99.99% confidence region (CR) (0.0958, 0.3131). Thus, Gκ is precisely estimated

to be positive. As discussed in Section 3 and shown in Table 3, in this case, replacing the

exclusion restriction φ = 0 with R+
2 has no bearing on the identification region for β under

R1, i.e. S1,2+

β = S1,c
β . Also, note that for certain coefficients, Ŝ1,2+

β is substantially tighter

than Ŝ1
β. In general, the Ŝ1,2+

β bounds are tight around the regression estimate.

The bounds estimates in Table 3 for the returns to the institution characteristics suggest

that the ceteris paribus difference in mean earnings between public and private institutions

36The entries in Tables 3, 4, and 5 display the ceteris paribus (approximate) percentage change in the
average earnings due to: a 100 point increase in SATAvg or the average ability U , being a private institution
(ControlInd), offering a graduate degree (HDeg), a percentage increase in any of the variables that appear in
logarithmic form, or a percentage point increase in any of the variables that are reported in percentile form.
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is statistically insignificant. Also, Table 3 reports a positive and statistically significant

percentage difference in the mean earnings of undergraduate students who attended an in-

stitution that offers a graduate degree as opposed to one that does not. Table 3’s bounds

on the returns to the student body characteristics suggest that an increase in the shares of

minority students (Black, Hispanic, or Asian) or a percentage increase in the average family

income leads to a significant percentage increase in the average earnings and that an increase

in the share of students who are female, dependent or have a postsecondary educated parent

leads to a significant percentage decrease in the average earnings. For example, under this

specification, the regression coefficient R̂Y.(W,X′)′ in column 1 estimates that a percentage

point increase in the share of females leads to a 0.4% decrease in the average earnings, with

CR0.95 (−0.54%,−0.27%). Accounting for the effects of the unobserved ability under R1 and

R+
2 in column 4 barely alters this gender earnings gap and yields the bounds [−0.4%,−0.39%]

for the coefficient on Female, with CR0.95 (−0.54%,−0.26%). Also, whereas a regression esti-

mates that a percentage increase in the enrollment size has a statistically significant positive

effect on the mean earnings, one cannot rule out under R1 and R+
2 that this effect is zero. Nor

can one rule out under R1 and R+
2 that the effect of an increase in the share of non-resident

aliens is zero. Last, the estimates for the returns to the affordability characteristics in Table

3 show that an increase in the shares of students with a federal student loan leads to a

significant percentage increase in the average earnings and that a percentage point increase

in the share of students who have a Pell grant or a percentage increase in the median debt

leads to a significant percentage decrease in the average earnings. Further, we cannot rule

out under R1 and R+
2 that the effect of a percentage increase in the average cost or the net

price is zero, whereas a regression estimates the latter effect to be statistically significantly

negative.

6.3.2 Estimates given the Composition of Majors

The second specification accounts for the composition of majors. This yields upper bounds

for the returns to college selectivity and average ability that are slightly smaller than the

bounds from the first specification. Further, the extent of the returns to the institution,

student body, and affordability characteristics under R1 and R+
2 is often more modest than

the first specification estimates suggest. For example, under R1 and R+
2 , the bounds on the

27



return to a percentage point increase in the share of females37 become smaller in magnitude:

[−0.23%,−0.20%] with CR0.95 (−0.34%,−0.1%). Also, after conditioning on the major

composition, we can no longer rule out at comfortable significance levels under R1 and R+
2

that the coefficient associated with offering a graduate degree, the share of students with a

postsecondary-educated parent, or the share of students with a federal student loan is zero.

Note that, unlike in the first specification, conditioning on the major composition renders the

regression coefficient on the logarithm of the average cost statistically significantly positive.

Nevertheless, we cannot rule out that this effect is zero under R1 and R+
2 .

Last, this specification allows us to study the consequences of changing the major com-

position. To illustrate this, Table 4 includes the regression and bounds estimates for the

coefficients associated with PICP13 (Education) and PCIP14 (Engineering). For instance,

under R1 and R+
2 , the estimated bounds on the return to shifting a percentage point of stu-

dents away from the excluded field of study (PCIP45, Social Sciences) and toward Education

are [−0.23%,−0.16%] with CR0.95 (−0.38%, 0.01%) whereas the corresponding bounds for

Engineering are [0.27%, 0.28%] with CR0.95 (0.09%, 0.47%). Table 7 reports the regression

estimates and bounds under R1 and R+
2 for all the CIP fields of study listed in Table 6.

6.3.3 Estimates given the Instructional Expenditures and the Completion Rate

The last specification studies whether attending a highly selective college leads to large

average earnings in part due to large instructional expenditures per student and a high

completion rate. In particular, after including these two variables in X, the regression

estimate R̂Y.(W,X′)′ in column 1 of Table 5 implies that if δ = 0 then a 100 point increase in

SATAvg leads to a 2.8% approximate increase in average earnings, with CR0.95 (1.3%, 4.2%).

Under R1 and classical measurement error with φ = 0, the estimates for the bounds on the

return to a 100 point increase in the average ability U become [2.8%, 5.5%] with CR0.95

(1.3%, 8.4%). Under R1 and R+
2 , with φδ ≥ 0, the bounds estimates in column 4 for the

ceteris paribus return to a 100 point increase in SATAvg or U are [0, 2.8%], with CR0.95

(0, 4.2%), and [0, 5.5%], with CR0.95 (0, 8.4%), respectively. Thus, in comparison to the

estimates in column 4 of Tables 3 and 4, accounting for the expenditures per student and

the completion rate leads to a substantially smaller upper bound estimates for the returns

37See e.g. Turner and Bowen (1999), Zafar (2013), and Gemici and Wiswall (2014) who study the gender
gap in major choices in the US.
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to the college selectivity and the average ability38. In contrast, the bounds estimates for the

return to the college characteristics X in Table 5 and the CIP fields of study in Table 8 are

tight around R̂Y.(W,X′)′ and generally similar to the estimates in Tables 4 and 7 respectively.

Last, the bounds estimates under R1 and R+
2 for the return to a percent increase in the

expenditures per student are [0.07%, 0.08%], with CR0.95 (0.05%, 0.1%), and the bounds for

the return to a percentage point increase in the completion rate are [0.11%, 0.19%], with

CR0.95 (0.01%, 0.27%).

6.4 Sensitivity to κ and Discussion

The bounds estimates for the returns to college selectivity and characteristics in Tables

3, 4, 5, 7, and 8 impose R1 and employ the default setting κ = 1. Nevertheless, this

paper’s framework does not require a particular choice for κ and a researcher may conduct a

sensitivity analysis that examines how the estimates change as κ varies. Figure 2 illustrates

this by plotting the estimated bounds Ŝ1,2+

φ , Ŝ1,2+

δ , Ŝ1,2+

β (using the darker shade) and the

95% confidence regions CR0.95 (using the lighter shade) for φ, δ, and β under R1 and R+
2

when κ ranges from39 0 to 30. It also plots Ŝ1
β and CR0.95 obtained under R1 only. To ease

the presentation for β, we focus on the coefficient associated with Female. Recall that setting

κ = 0 assumes that there is no measurement error (σ2
ε = 0) whereas setting κ = 30 allows

the variance of the measurement error to be 30 times as large as the variance of U net of X,

σ2
ε ≤ 30σ2

U∗ . Thus, setting κ = 30 permits X to explain the variance of U considerably better

than the variance of W , so that σ2
W ∗ = σ2

U∗ + σ2
ε may substantially exceed σ2

U∗ . For a given

κ, Figure 2 shows how the bounds estimates and confidence regions for φ, δ, and β change

across the three specifications that we consider. Further, it illustrates how, unlike φ, the

bounds estimates and confidence regions for δ and β vary with κ. In particular, the kinks in

the bounds estimates and CR0.95 correspond to κ values when the Fκ or Gκ estimate changes

sign and the significance of the sign of Fκ or Gκ at the 99.99% level changes, respectively.

38When augmenting X with log(InExpFTE) only, the bounds on the ceteris paribus return to a 100
point increase in SATAvg or U under R1 and R+

2 are [0, 4%], with CR0.95 (0, 5.3%), and [0, 8%], with CR0.95

(0, 10.6%), respectively. Further, augmenting X with C150 4 only yields the bounds [0, 3.3%], with CR0.95

(0, 4.7%), and [0, 6.6%], with CR0.95 (0, 9.4%), respectively.
39Since R2

W.X is estimated to be 0.8183, 0.8612, and 0.8893 in the above three nested specifications, letting
κ range from 0 to 30 corresponds to letting τ range from 0 to τ̄ = 0.2134, 0.1552, and 0.12 respectively, so
that R2

W.X ≤ 1
1+τ̄ ≤

1
1+τ ≤ R2

W.U and 1
1+τ̄ is 0.8241, 0.8657, and 0.8929.
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Note that Ŝ1
β and especially Ŝ1,2+

β remain relatively tight around the regression estimate as

the value of κ varies over a sizeable range. For example, under R1 and R+
2 , the smallest κ

value for which the CR0.95 for the Female coefficient contains 0 is 9.2, 29.6, and 15.2 under

the first, second, and third specification respectively. This suggests as possibilities that either

the measurement error in how the average SAT score proxies the average ability is modest

(i.e. ε in equation (1) is is close to being degenerate and RY.(W,X′)′ approaches (φ + δ, β′)′)

or the average ability U has a small effect on the mean earnings (i.e. δ in equation (S) is

close to 0 and RY.(W,X′)′ approaches (φ, β′)′).

To conclude Section 6, we note that this empirical analysis may inherit some of limitations

of the CS data that arise due to data unavailability or aggregation. Further, the analysis

imposes several assumptions which may fail, including linearity, homogeneity of the slope

coefficients, or that endogeneity arises due to one variable U . For example, this paper defines

college selectivity as the average SAT score of a student cohort, as is often assumed in the

literature, and a more general model would allow the average SAT score to serve as a proxy for

both the college selectivity40 and the average ability. However, this specification falls outside

of the scope of this paper’s econometrics framework which is concerned with a scalar latent

variable. As such, the paper’s estimates should be carefully interpreted if one suspects that

the imposed assumptions do not hold or that there are unobserved confounders other than

U . Nevertheless, this analysis contributes to the literature in two ways. First, it analyzes

the rich CS data which comprehensively represents the post-secondary institutions in the

US. Second, it does not impose several commonly employed assumptions. In particular, the

analysis allows college selectivity W to serve as a error-laden proxy for the average ability

U and to directly affect the average earnings. This dispenses with the exclusion restriction

φ = 0 that is commonly imposed in the measurement error literature. Also, the analysis

allows for selection on unobserved ability and requires neither the availability of exogenous

instruments41 nor of conditioning covariates that ensure the exogeneity of (W,X ′)′.

40Black and Smith (2006) study a setting in which multiple proxies for the unobserved college quality are
available but there is no selection on unobserved ability.

41For instance, in the second and third (but not the first) specifications, the bounds on the coefficient on
ParEdPctPS (the share of students with at least one post-secondary educated parent) contain zero. Suppose
that one assumes that ParEdPctPS is excluded from the average earnings equation in these specifications.
Then one can apply Proposition 3.1 by using X1 = ParEdPctPS as an instrument. Specifically, the IV
estimate for φ+δ is 3.87% with 95% CI (1.1%, 6.63%) in the second specification and is small and insignificant
in the third specification, −0.67% with 95% CI (−4.41%, 3.07%). In both specifications, the IV estimates
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7 Conclusion

This paper studies the identification of the coefficients in a linear equation when data on the

outcome Y , covariates X, and an error-laden proxy W for a latent variable U are available.

It extends the measurement error literature by removing the standard exclusion restriction

that assumes that the coefficient on the proxy W in the outcome equation is set to zero.

This accommodates a leading setting for differential measurement error that occurs when

a variable W , which serves as a proxy for the latent variable U , may directly affect the

outcome. First, the paper demonstrates the crucial role that the proxy exclusion restriction

plays in ensuring the validity of the standard classical measurement error bounds in the

literature since removing it renders the coefficients on the proxy W , the latent variable

U , and the covariates X not separately identified. We then characterize the identification

regions for these coefficients under two auxiliary restrictions. The first restriction imposes

an upper bound κ on the net of X “noise to signal” ratio, i.e. the ratio of the variance of

the measurement error ε to the variance of the latent variable U given X. This permits

conducting a sensitivity analysis that examines the consequences of deviating from the “no

measurement error” assumption κ = 0. The second auxiliary restriction specifies whether

the effects φ and δ of the proxy W and the latent variable U on the outcome Y are of the

same or the opposite direction (φδ ≤ 0 or φδ ≥ 0). This relaxes the exclusion restriction

φ = 0.

After discussing estimation and inference, we employ the paper’s framework to study the

returns to college selectivity and characteristics. We analyze the recently released College

Scorecard (CS) data which reports comprehensive data, aggregated at the institution level, on

postsecondary institutions in the US. Following the literature, we define college selectivity as

the average SAT equivalent score for the enrolled student cohort. We then use a parsimonious

model for the logarithm of the average earnings of the cohort as a function of the college

selectivity, the characteristics of the college, and the average unobserved ability of the cohort.

For the college characteristics, we consider characteristics of the institution, student body,

and affordability as well as the major composition, the instructional expenditures, and the

completion rate. We allow the average scholastic ability to statistically depend on these

for the coefficients on the remaining covariates are generally similar to the regression and bounds estimates.
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college characteristics and let the average SAT score serve as an error-laden proxy for the

average unobserved ability. Thus, selectivity (i.e. the average SAT score) serves as an

“included” proxy for the average ability and may directly impact the average earnings.

Under our auxiliary restrictions, we report an informative upper bound on the returns

to college selectivity and average ability 6 years after enrollment. In particular, given the

college characteristics and the major composition, a 100 points increase in the average SAT

score leads to at most a 4.8% increase in the average earnings, with CR0.95 (0, 6.1%). We

also report tight bounds on the returns to the college characteristics and contrast these with

the regression estimates. In particular, for the institution characteristics, we cannot rule out

that undergraduates who attend a public as opposed to a private institution, or an institution

that offers a graduate degree as opposed to one that does not, have similar mean earnings

ceteris paribus. For the student body characteristics, our estimates suggest that an increase

in the share of minority students or in the average family income has a positive effect on

the average earnings and that an increase in the share of female or dependent students has

a negative effect on the average earnings. However, the evidence on the directions of the

effects of the enrollment size, the share of non-resident aliens, or the share of students with a

post-secondary educated parent is inconclusive. For the affordability characteristics, we find

that an increase in the share of students with Pell grants or in the median student debt has a

negative effect on the average earnings and we cannot rule out that the effect of an increase

in the average cost, the net price, or the share of students with a federal student loan is

zero. We also obtain tight bounds on the effects of a change in the major composition. For

example, a shift away from the social sciences and toward engineering (English Language

and Literature/Letters) increases (decreases) mean earnings. Further, we demonstrate how

conditioning on the major composition reduces the magnitude of the bounds on the effects of

certain college characteristics, such as the gender composition or offering a graduate degree.

Last, we report bounds on the effects of the instructional expenditures per student and the

completion rate on mean earnings and show how conditioning on these variables narrows the

upper bounds on the returns to the college selectivity and the average ability.
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A Mathematical Proofs

Proof of Proposition 3.1 Since Cov[(η, ε)′, X] = 0 and Cov(X, (W,X ′2)′) is nonsingular,

the result obtain from Y = X ′2β2 +W (φ+ δ)− εδ + η.

Proof of Theorem 3.2: Since Cov[(η, ε)′, X] = 0 and V ar(X) is nonsingular, we obtain

β = RY.X −RW.X(φ+ δ).

A2 and A3 give σU∗,ε = σU∗,η = σε,η = 0. Using RW.X = RU.X and Y ∗ = U∗(φ+ δ) + εφ+ η,

we have

σ2
W ∗ = σ2

U∗ + σ2
ε ,

σ2
Y ∗ = (φ+ δ)2σ2

U∗ + φ2σ2
ε + σ2

η, and

σW ∗,Y ∗ = (φ+ δ)σ2
U∗ + φσ2

ε .

Since V ar[(X ′,W )′] is nonsingular, we have that σ2
W ∗ 6= 0 and we obtain

RY ∗.W ∗ =
σW ∗,Y ∗

σ2
W ∗

= φ(1− ρ) + (φ+ δ)ρ = φ+ δρ, and

σ2
Y ∗

σ2
W ∗

= φ2(1− ρ) + (φ+ δ)2ρ+ ξ2.

Since ρ 6= 0, we obtain δ = D(ρ, φ) ≡ 1
ρ
(RY ∗.W ∗ − φ),

β = B(ρ, φ) ≡ RY.X −RW.X(φ+D(ρ, φ)) = RY.X −RW.X
1

ρ
[RY ∗.W ∗ − φ(1− ρ)],

and

ξ2 = C2(ρ, φ) ≡ σ2
Y ∗

σ2
W ∗
− φ2(1− ρ)− (φ+D(ρ, φ))2ρ

=
σ2
Y ∗

σ2
W ∗
− φ2(1− ρ)− 1

ρ
(RY ∗.W ∗ − φ(1− ρ))2

=
σ2
Y ∗

σ2
W ∗
− (1− ρ)

ρ
(φ−RY ∗.W ∗)

2 −R2
Y ∗.W ∗ .

Proof of Corollary 3.3: Setting φ = 0 in S1
ρ,φ,δ,β from Corollary 3.4, we obtain

0 ≤ C2(ρ, 0) ≡ σ2
Y ∗

σ2
W ∗
− (1− ρ)

ρ
R2
Y ∗.W ∗ −R2

Y ∗.W ∗ =
σ2
Y ∗

σ2
W ∗
− 1

ρ
R2
Y ∗.W ∗ .
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Since 0 < ρ ≤ 1, it follows that when 0 < σ2
Y ∗ we have

RY ∗.W ∗RW ∗.Y ∗ =
R2
Y ∗.W ∗σ

2
W ∗

σ2
Y ∗

≤ ρ ≤ 1.

By R1, we obtain max{RY ∗.W ∗RW ∗.Y ∗ ,
1

1+κ
} ≤ ρ ≤ 1. Setting f = 0 in the proof of Corollary

3.4 proves that S1,c
ρ,φ,δ,β, and thus S1,c

ρ , are sharp. The bounds S1,c
δ and S1,c

β obtain by setting

φ = 0 in the expressions for δ = D(ρ, 0) = 1
ρ
RY ∗.W ∗ and β = B(ρ, 0) = RY.X −RW.X

1
ρ
RY ∗.W ∗

from Theorem 3.2. Since S1,c
ρ is sharp, it follows from the mappings D(ρ, 0) and B(ρ, 0) that

S1,c
δ and S1,c

β are sharp.

Proof of Corollary 3.4: The identification set S1
ρ,φ,δ,β obtains from R.1 and the moments

V ar[(Y ∗,W ∗)′], given by (in)equalities (4-6), using the expressions in Theorem 3.2. To show

that S1
ρ,φ,δ,β is sharp, let d = D(r, f) and b = B(r, f). We show that for each (r, f, d, b) ∈

S1
ρ,φ,δ,β there exist random variables (Ũ , η̃, ε̃) that satisfy A2 and A3 such that Y = X ′b +

Wf + Ũd + η̃ and W = Ũ + ε̃ with
σ2
Ũ∗

σ2
W∗

= r. For this, let V be any random variable such

that V ∗ ≡ εV.X is nondegenerate and satisfies

σW ∗.V ∗ =
√
rσV ∗σW ∗ and σY ∗.V ∗ =

1√
r
σW ∗σV ∗ [

σY ∗.W ∗

σ2
W ∗

− f(1− r)].

Note that these covariance matrix restrictions are coherent. Specifically,

V ar(V ∗,W ∗, Y ∗) =

 σ2
V ∗

√
rσV ∗σW ∗

σW∗σV ∗√
r

[σY ∗.W∗
σ2
W∗
− f(1− r)]

√
rσV ∗σW ∗ σ2

W ∗ σY ∗,W ∗
σW∗σV ∗√

r
[σY ∗.W∗
σ2
W∗
− f(1− r)] σY ∗,W ∗ σ2

Y ∗


is positive semi-definite, since a basic calculation and 0 ≤ C2(r, f) yield the determinant

det(σ2
(V ∗,W ∗,Y ∗)′) = (1−r)σ2

V ∗σ
4
W ∗ [

σ2
Y ∗

σ2
W ∗
−1− r

r
(RY ∗.W ∗−f)2−R2

Y ∗.W ∗ ] = (1−r)σ2
V ∗σ

4
W ∗C

2(r, f) ≥ 0.

For instance, to construct V , set σV ∗ to some value (e.g. σV ∗ = 1) and let ϑ be any random

variable that is uncorrelated with (Y ∗,W ∗) (e.g. a residual from a regression on (Y ∗,W ∗)).

Then one can use the above restrictions on σW ∗.V ∗ and σY ∗.V ∗ to construct RV ∗.(W ∗,Y ∗)′ and

the scalar

τ = { 1

σ2
ϑ

[σ2
V ∗ −R′V ∗.(W ∗,Y ∗)′σ2

(W ∗,Y ∗)RV ∗.(W ∗,Y ∗)′ ]}
1
2

(τ ensures that the variance of the generated V ∗ is σ2
V ∗) to construct

V ∗ = (W ∗, Y ∗)RV ∗.(W ∗,Y ∗)′ + τϑ.
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Last, V = X ′RV.X + V ∗ obtains by setting RV.X to some value (e.g. 0).

Then it suffices to set (Ũ , ε̃, η̃) = (V ∗RW ∗.V ∗ + X ′RW.X , εW.(X′,V )′ , εY.(X′,V,ε̃)′) so that

RŨ .X = RW.X and Ũ∗ = V ∗RW ∗.V ∗ . In particular, by construction, (X, Ũ, ε̃, η̃) satisfy A2

and A3 since Cov[η̃, (X ′, Ũ)′] = 0 and Cov[ε̃, (η̃, X ′, Ũ)′] = 0. Further, projecting the Y and

W equations onto X gives

RY.X = b+RŨ .X(f + d) = b+RW.X(f + d)

and the following Y ∗ andW ∗ equations which are consistent with the construction of (Ũ , ε̃, η̃):

Y ∗ = W ∗f + Ũ∗d+ η̃ = V ∗RW ∗.V ∗(d+ f) + ε̃f + η̃

W ∗ = Ũ∗ + ε̃ = V ∗RW ∗.V ∗ + ε̃.

In particular, we have ε̃ = εW.(X′,V )′ and
σ2
Ũ∗

σ2
W∗

=
σ2
W∗.V ∗

σ2
V ∗σ

2
W∗

= r. Last, we verify that RY ∗.V ∗ =

RW ∗.V ∗(d + f) and RY ∗.ε̃ = f . Since Cov(V ∗, ε̃) = 0, this implies that RY ∗.(V ∗,ε̃)′ =

(RW ∗.V ∗(d+ f), f)′ which is consistent with η̃ = εY.(X′,V,ε̃)′ . We have:

RY ∗.V ∗

RW ∗.V ∗
=
σY ∗.V ∗

σW ∗.V ∗
=

1√
r
σW ∗σV ∗ [

σY ∗.W∗
σ2
W∗
− f(1− r)]

√
rσV ∗σW ∗

=
1

r
[RY ∗.W ∗ − f(1− r)] = d+ f , and

RY ∗.ε̃ =
σY ∗.ε̃
σ2
ε̃

=
σY ∗.W ∗ − σY ∗.V ∗σW∗.V ∗

σ2
V ∗

(1− r)σ2
W ∗

=
1

(1− r)σ2
W ∗

[σY ∗.W ∗ −
1√
r
σW ∗σV ∗ [

σY ∗.W∗
σ2
W∗
− f(1− r)]

√
rσV ∗σW ∗

σ2
V ∗

] = f.

Next, we derive the projected identification regions. S1
ρ obtains by R1. Further, recall

that B(r, f) = RY.X −RW.Xs where

s = S(r, f) ≡ f +D(r, f) =
1

r
[RY ∗.W ∗ − f(1− r)].

For all (1, f, d, b) ∈ S1
ρ,φ,δ,β, we have that s = RY ∗.W ∗ . Further, for all (r, f, d, b) ∈ S1

ρ,φ,δ,β with

r 6= 1, and corresponding S(r, f), we have that

0 ≤ C2(r, f) = C2(r,
1

(1− r)
(RY ∗.W ∗ − rs)) =

σ2
Y ∗

σ2
W ∗
− (1− r)

r
(f −RY ∗.W ∗)

2 −R2
Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
− r

(1− r)
(s−RY ∗.W ∗)

2 −R2
Y ∗.W ∗ .

Since 1
κ
≤ r

1−r by R1, we obtain

1

κ
(s−RY ∗.W ∗)

2 ≤ r

(1− r)
(s−RY ∗.W ∗)

2 ≤ σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗ ,
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and therefore s ∈ S1
φ+δ = {RY ∗.W ∗ + λ[κ(

σ2
Y ∗

σ2
W∗
− R2

Y ∗.W ∗)]
1
2} : −1 ≤ λ ≤ 1}. The expression

for S1
β follows from B(r, f) = RY.X −RW.Xs.

To show that the projected regions are sharp, we show that every point in a projected

region could have been generated by a point (r, f, d, b) ∈ S1
ρ,φ,δ,β. In particular, S1

ρ is sharp

since for each r ∈ S1
ρ , setting f = RY ∗.W ∗ gives 0 ≤ C2(r, RY ∗.W ∗) =

σ2
Y ∗

σ2
W∗
−R2

Y ∗.W ∗ where we

make use of the Cauchy Schwarz inequality. Further, S1
φ is not identified since for each f ∈ R,

setting r = 1 gives 0 ≤ C2(1, f) =
σ2
Y ∗

σ2
W∗
−R2

Y ∗.W ∗ . Similarly, S1
δ is not identified since for each

d ∈ R, setting r = 1 and f = RY ∗.W ∗ − rd gives D(r, f) = d and 0 ≤ C2(1, RY ∗.W ∗ − rd) =
σ2
Y ∗

σ2
W∗
− R2

Y ∗.W ∗ . Last, we show that S1
φ+δ, and thus S1

β, is sharp. For κ = 0, setting r = 1

gives S(1, f) = RY ∗.W ∗ and 0 ≤ C2(r, f) =
σ2
Y ∗

σ2
W∗
− R2

Y ∗.W ∗ . Otherwise, for κ 6= 0 and each

s ∈ S1
φ+δ corresponding to λs ∈ [−1, 1], setting r = 1

1+κ
and f = 1

(1−r)(RY ∗.W ∗ − rs) gives

S(r, f) = s and

C2(
1

1 + κ
,

1

(1− r)
(RY ∗.W ∗ − rs)) =

σ2
Y ∗

σ2
W ∗
− r

(1− r)
(s−RY ∗.W ∗)

2 −R2
Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
− 1

κ
λ2
sκ(

σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗)−R2
Y ∗.W ∗

= (1− λ2
s)(

σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗) ≥ 0.

Proof of Corollary 3.5: The identification set S1,2+

ρ,φ,δ,β obtains from R1, R+
2 , and the

moments V ar[(Y ∗,W ∗)′], given by (in)equalities (4-6), using the expressions in Theorem 3.2.

Since S1,2+

ρ,φ,δ,β ⊆ S1
ρ,φ,δ,β, the sharpness proof in Corollary 3.4 implies that S1,2+

ρ,φ,δ,β is sharp.

Next, we derive the projected identification regions. By R1, ρ ∈ S1,2+

ρ . By R+
2 , 0 ≤

E(r, f) ≡ 1
r
f(RY ∗.W ∗ − f) for all (r, f, d, b) ∈ S1,2+

ρ,φ,δ,β and thus φ ∈ S1,2+

φ . S1,2+

δ and S1,2+

β

obtain by studying the behavior of D(r, f) and B(r, f) subject to the constraints defining

S1,2+

ρ,φ,δ,β. For brevity, we give a proof by contradiction for S1,2+

δ . Let (r, f, d, b) ∈ S1,2+

ρ,φ,δ,β and

suppose that d = D(r, f) 6∈ S1,2+

δ . Then f = RY ∗.W ∗ − rd and we have that

0 ≤ C2(r, RY ∗.W ∗ − rd) =
σ2
Y ∗

σ2
W ∗
− (1− r)

r
(f −RY ∗.W ∗)

2 −R2
Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
− (1− r)rd2 −R2

Y ∗.W ∗ , and

0 ≤ E(r, RY ∗.W ∗ − rd) =
1

r
f(RY ∗.W ∗ − f) = (RY ∗.W ∗ − rd)d.
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Given R1, it follows that

r(1− r) ≤ 1

d2
(
σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗) and
1

1 + κ
≤ r ≤ RY ∗.W ∗

1

d
.

If RY ∗.W ∗
1
d
≤ 0 then r ≤ RY ∗.W ∗

1
d
≤ 0, a contradiction. Let dRY ∗.W ∗ > 0 with d 6∈ S1,2+

δ .

When κ = 0, this leads to the contradiction 1 ≤ r ≤ RY ∗.W ∗
1
d
< 1. When Fκ ≤ 0 and 0 < κ,

we obtain

r(1− r) <
(
σ2
Y ∗

σ2
W∗
−R2

Y ∗.W ∗)

(1 + κ)2R2
Y ∗.W ∗

1
κ
(1
ρ
− 1)

=
1

1 + κ
(1− 1

1 + κ
)

1
RY ∗.W∗RW∗.Y ∗

− 1

(1
ρ
− 1)

, and

1

1 + κ
≤ r <

1

(1 + κ)[ 1
κ
(1
ρ
− 1)]

1
2

and when 0 ≤ Fκ, we obtain

r(1− r) <
(
σ2
Y ∗

σ2
W∗
−R2

Y ∗.W ∗)

R2
Y ∗.W ∗

1
ρ2

= ρ2(
1

RY ∗.W ∗RW ∗.Y ∗
− 1), and

1

1 + κ
≤ r < RY ∗.W ∗

1

RY ∗.W ∗
1
ρ

= ρ.

When ρ = 1
1+κ

this leads to the contradiction 1
1+κ

≤ r < 1
1+κ

. Further, when ρ =

RW ∗.Y ∗RY ∗.W ∗ this leads to the contradictory inequalities 1
1+κ
≤ r < RY ∗.W ∗RW ∗.Y ∗ and

r(1− r) < min{ 1
1+κ

(1− 1
1+κ

), RY ∗.W ∗RW ∗.Y ∗(1−RW ∗.Y ∗RY ∗.W ∗)}, where we make use of the

fact that, when κ 6= 0, Fκ ≤ 0 if and only if

1

(1 + κ)[ 1
κ
( 1
RY ∗.W∗RW∗.Y ∗

− 1)]
1
2

≤ RY ∗.W ∗RW ∗.Y ∗ .

Last, S1,2+

β obtains from B(r, f) = RY.X − RW.Xs and the bounds S1,2+

φ+δ for s = S(r, f) ≡
1
r
[RY ∗.W ∗ − f(1− r)]. Let (r, f, d, b) ∈ S1,2+

ρ,φ,δ,β. If r = 1 then s = RY ∗.W ∗ whereas if 0 < r < 1

then f = 1
(1−r)(RY ∗.W ∗ − rs) and

0 ≤ E(r,
1

(1− r)
(RY ∗.W ∗ − rs)) =

1

r
f(RY ∗.W ∗ − f) =

1

(1− r)2
(RY ∗.W ∗ − rs)(s−RY ∗.W ∗).

Given R1, it follows that

|RY ∗.W ∗ | ≤ |s| ≤
1

r
|RY ∗.W ∗| ≤ (1 + κ) |RY ∗.W ∗| and 0 ≤ sRY ∗.W ∗ .

Thus, if RY ∗.W ∗ = 0 then φ + δ = 0 and β = RY.X . Also, from Corollary 3.4, we have that

φ + δ ∈ S1
φ+δ. And, when RY ∗.W ∗ 6= 0, 1 + [κ( 1

RY ∗.W∗RW∗.Y ∗
− 1)]

1
2 ≤ 1 + κ if and only if

1
1+κ
≤ RY ∗.W ∗RW ∗.Y ∗ . It follows that φ+ δ ∈ {RY ∗.W ∗(1 + λ[κ(1

ρ
− 1)]

1
2 ) : 0 ≤ λ ≤ 1}.
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Next, we show that the projected regions are sharp. S1,2+

ρ is sharp because for each

r ∈ S1,2+

ρ , setting f = RY ∗.W ∗ gives 0 ≤ C2(r, RY ∗.W ∗) and E(r, RY ∗.W ∗) = 0. S1,2+

φ is sharp

because for each f ∈ S1,2+

φ , setting r = 1 gives 0 ≤ C2(1, f) and 0 ≤ E(1, f). To show

that S1,2+

δ is sharp, for each d ∈ S1,2+

δ , corresponding to λd ∈ [0, 1], set f = RY ∗.W ∗ − rd so

that d = D(r, f) and choose r as follows. If RY ∗.W ∗ = 0 or κ = 0 then set r = 1 so that

0 ≤ C2(1, RY ∗.W ∗ − rd) =
σ2
Y ∗

σ2
W∗
−R2

Y ∗.W ∗ , and

0 ≤ E(1, RY ∗.W ∗ − rd) = (RY ∗.W ∗ − λdRY ∗.W ∗)λdRY ∗.W ∗ = λd(1− λd)R2
Y ∗.W ∗ .

Now suppose that RY ∗.W ∗ 6= 0. If Fκ ≤ 0 and 0 < κ then set r = 1
1+κ

so that

C2(
1

1 + κ
,RY ∗.W ∗ − rd) =

σ2
Y ∗

σ2
W ∗
− (1− r)rd2 −R2

Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
− κ

(1 + κ)2
λ2
d(1 + κ)2R2

Y ∗.W ∗
1

κ
(
1

ρ
− 1)−R2

Y ∗.W ∗

≥ σ2
Y ∗

σ2
W ∗
− λ2

dR
2
Y ∗.W ∗(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)−R2

Y ∗.W ∗

= (1− λ2
d)(

σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗) ≥ 0.

Further, we have that

E(
1

1 + κ
,RY ∗.W ∗ − rd) = (RY ∗.W ∗ − rd)d

= λd(1 + κ)R2
Y ∗.W ∗ [

1

κ
(
1

ρ
− 1)]

1
2 − λ2

d

1 + κ

κ
R2
Y ∗.W ∗(

1

ρ
− 1).

If ρ = 1
1+κ

then

E(
1

1 + κ
,RY ∗.W ∗− rd) = λd(1+κ)R2

Y ∗.W ∗−λ2
d(1+κ)R2

Y ∗.W ∗ = λd(1−λd)(1+κ)R2
Y ∗.W ∗ ≥ 0.

If ρ = RY ∗.W ∗RW ∗.Y ∗ then 1
κ
( 1
RY ∗.W∗RW∗.Y ∗

− 1) ≤ 1 and

E(
1

1 + κ
,RY ∗.W ∗ − rd)

= λdR
2
Y ∗.W ∗(1 + κ)[

1

κ
(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 − λ2

d

1 + κ

κ
R2
Y ∗.W ∗(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)

≥ λdR
2
Y ∗.W ∗(1 + κ)

1

κ
(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)− λ2

d

1 + κ

κ
R2
Y ∗.W ∗(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)

= λd(1− λd)
1 + κ

κ
R2
Y ∗.W ∗(

1

RY ∗.W ∗RW ∗.Y ∗
− 1) ≥ 0.
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Otherwise, if 0 ≤ Fκ then set r = ρ so that

C2(ρ,RY ∗.W ∗ − rd) =
σ2
Y ∗

σ2
W ∗
− (1− r)rd2 −R2

Y ∗.W ∗ =
σ2
Y ∗

σ2
W ∗
− 1− ρ

ρ
λ2
dR

2
Y ∗.W ∗ −R2

Y ∗.W ∗ .

If ρ = 1
1+κ

then κ ≤ 1
RY ∗.W∗RW∗.Y ∗

− 1 and

C2(ρ,RY ∗.W ∗ − rd) =
σ2
Y ∗

σ2
W ∗
− κλ2

dR
2
Y ∗.W ∗ −R2

Y ∗.W ∗

≥ σ2
Y ∗

σ2
W ∗
− (

1

RY ∗.W ∗RW ∗.Y ∗
− 1)λ2

dR
2
Y ∗.W ∗ −R2

Y ∗.W ∗

= (1− λ2
d)(

σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗) ≥ 0.

If ρ = RY ∗.W ∗RW ∗.Y ∗ then

C2(ρ,RY ∗.W ∗ − rd) =
σ2
Y ∗

σ2
W ∗
− 1−RY ∗.W ∗RW ∗.Y ∗

RY ∗.W ∗RW ∗.Y ∗
λ2
dR

2
Y ∗.W ∗ −R2

Y ∗.W ∗

= (1− λ2
d)(

σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗) ≥ 0.

Further, we have

E(ρ,RY ∗.W ∗ − rd) = (RY ∗.W ∗ − rd)d = (RY ∗.W ∗ − ρλdRY ∗.W ∗
1

ρ
)λdRY ∗.W ∗

1

ρ

= (1− λd)λdR2
Y ∗.W ∗

1

ρ
≥ 0.

Last, since B(r, f) = RY.X − RW.Xs, it suffices to show that S1,2+

φ+δ , and thus S1,2+

β , is

sharp. If RY ∗.W ∗ = 0 or κ = 0 then setting r = 1 and f = RY ∗.W ∗ , so that s = S(r, f) =

RY ∗.W ∗ , gives 0 ≤ C2(1, RY ∗.W ∗) =
σ2
Y ∗

σ2
W∗
− R2

Y ∗.W ∗ and E(1, RY ∗.W ∗) = 0. Otherwise, for

RY ∗.W ∗ 6= 0, κ 6= 0, and each s ∈ S1,2+

φ+δ corresponding to λs ∈ [0, 1], setting r = 1
1+κ

and

f = 1
(1−r)(RY ∗.W ∗ − rs), so that S(r, f) = s, yields

C2(
1

1 + κ
,

1

(1− r)
(RY ∗.W ∗ − rs))

=
σ2
Y ∗

σ2
W ∗
− r

(1− r)
(s−RY ∗.W ∗)

2 −R2
Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
− 1

κ
(RY ∗.W ∗{1 + λs[κ(

1

ρ
− 1)]

1
2} −RY ∗.W ∗)

2 −R2
Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗λ
2
s(

1

ρ
− 1)−R2

Y ∗.W ∗ ≥ 0
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where the last inequality is shown above. Since κ ≥ 1
ρ
− 1, we also have

E(
1

1 + κ
,

1

(1− r)
(RY ∗.W ∗ − rs))

=
1

(1− r)2
(RY ∗.W ∗ − rs)(s−RY ∗.W ∗)

=
(1 + κ)2

κ2
(RY ∗.W ∗ −

1

1 + κ
RY ∗.W ∗{1 + λs[κ(

1

ρ
− 1)]

1
2})(RY ∗.W ∗λs[κ(

1

ρ
− 1)]

1
2 )

=
1 + κ

κ2
R2
Y ∗.W ∗(κ− λs[κ(

1

ρ
− 1)]

1
2 )(λs[κ(

1

ρ
− 1)]

1
2 )

= λs
1 + κ

κ
R2
Y ∗.W ∗{[κ(

1

ρ
− 1)]

1
2 − λs(

1

ρ
− 1)}

≥ λs
1 + κ

κ
R2
Y ∗.W ∗ [(

1

ρ
− 1)2]

1
2 − λs(

1

ρ
− 1)] = λs(1− λs)

1 + κ

κ
R2
Y ∗.W ∗(

1

ρ
− 1) ≥ 0.

Proof of Corollary 3.6: The identification region S1,2−

ρ,φ,δ,β obtains from R1 , R−2 , and

the moments V ar[(Y ∗,W ∗)′] given by (in)equalities (4-6), using the expressions in Theorem

3.2. Since S1,2−

ρ,φ,δ,β ⊆ S1
ρ,φ,δ,β, the sharpness proof in Corollary 3.4 applies to S1,2−

ρ,φ,δ,β.

Next, we derive the projected identification regions. By R1, ρ ∈ S1,2−
ρ . If RY ∗.W ∗ = 0

then S1,2−

φ = S1,2−

δ = R. If RY ∗.W ∗ 6= 0, since E(r, f) = 1
r
f(RY ∗.W ∗ − f) ≤ 0 for all

(r, f, d, b) ∈ S1,2−

ρ,φ,δ,β, we have that f ∈ S1,2−

φ . Similarly, if RY ∗.W ∗ 6= 0 let (r, f, d, b) ∈

S1,2−

ρ,φ,δ,β and suppose that d = D(r, f) 6∈ S1,2−

δ (i.e. d ∈ {λRY ∗.W ∗ : 0 < λ < 1}) then

E(r, RY ∗.W ∗ − rd) = (RY ∗.W ∗ − rd)d ≤ 0 implies that 1 < RY ∗.W∗
d

≤ r, a contradiction.

Last, we derive S1,2−

β . If RY ∗.W ∗RW ∗.Y ∗ ≤ 1
1+κ

then S1,2−

β = S1
β, the bounds obtained from

Corollary 3.4. To derive S1,2−

β when 1
1+κ
≤ RY ∗.W ∗RW ∗.Y ∗ , it suffices to derive the bound

S1,2−

φ+δ for φ + δ since β = RY.X − RW.X(φ + δ). Let (r, f, d, b) ∈ S1,2−

ρ,φ,δ,β and suppose that

s = S(r, f) 6∈ S1,2−

φ+δ . Then, from Corollary 3.4, we have that

s ∈ S1
φ+δ\S

1,2−

φ+δ = {λ 1

RW ∗.Y ∗
+ (1− λ)RY ∗.W ∗(1 + [κ(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 ) : 0 ≤ λ < 1}.

Note that RY ∗.W ∗RW ∗.Y ∗ < 1 since if RY ∗.W ∗RW ∗.Y ∗ = 1 then S1
φ+δ\S

1,2−

φ+δ is empty. Further,

note that s, 1
RW∗.Y ∗

, and RY ∗.W ∗ have the same sign. Last, since 1
1+κ
≤ RY ∗.W ∗RW ∗.Y ∗ , we

obtain that

|RY ∗.W ∗ | <
1

|RW ∗.Y ∗ |
< |s| ≤ |RY ∗.W ∗ | (1 + [κ(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 ).

If r = 1 then s = RY ∗.W ∗ ∈ S1,2−

δ . Thus, r 6= 1 and we have

E(r,
1

1− r
(RY ∗.W ∗ − rs)) =

1

(1− r)2
(RY ∗.W ∗ − rs)(s−RY ∗.W ∗) ≤ 0.
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Further, E(r, f) = 0 if and only if either d = 0, and thus s = RY ∗.W ∗ , or f = 0, and thus

s ∈ S1,c
δ , contradicting s ∈ S1

φ+δ\S
1,2−

φ+δ . Therefore, we must have E(r, 1
1−r (RY ∗.W ∗− rs)) < 0,

so that either |s| < |RY ∗.W ∗| < 1
r
|RY ∗.W ∗| (which is ruled out by |RY ∗.W ∗| < |s| above) or

|RY ∗.W ∗| < 1
r
|RY ∗.W ∗ | < |s|. In particular, we obtain that

∣∣RY ∗.W∗
s

∣∣ < r. Since

0 ≤ C2(r,
1

1− r
(RY ∗.W ∗ − rs)) =

σ2
Y ∗

σ2
W ∗
− r

1− r
(s−RY ∗.W ∗)

2 −R2
Y ∗.W ∗ ,

using
∣∣RY ∗.W∗

s

∣∣ < r and 0 < |s| − |RY ∗.W ∗| ≤ |s−RY ∗.W ∗| we obtain

|RY ∗.W ∗| |s−RY ∗.W ∗| ≤
|RY ∗.W ∗ |

|s| − |RY ∗.W ∗|
(s−RY ∗.W ∗)

2 <
r

1− r
(s−RY ∗.W ∗)

2 ≤ RY ∗.W ∗

RW ∗.Y ∗
−R2

Y ∗.W ∗ .

It follows that

|s−RY ∗.W ∗| <
∣∣∣∣ 1

RW ∗.Y ∗
−RY ∗.W ∗

∣∣∣∣ .
But since s, 1

RW∗.Y ∗
, and RY ∗.W ∗ have the same sign this contradicts |RY ∗.W ∗ | < 1

|RW∗.Y ∗ |
< |s|.

S1,2−
ρ is sharp since for each r ∈ S1,2−

ρ setting f = RY ∗.W ∗ gives 0 ≤ C2(r, RY ∗.W ∗)

and E(r, RY ∗.W ∗) = 0. S1,2−

φ is sharp since for each f ∈ {λRY ∗.W ∗ : λ 6∈ (0, 1)} and

corresponding λf 6∈ (0, 1) when RY ∗.W ∗ 6= 0 (or f ∈ R when RY ∗.W ∗ = 0) setting r = 1 gives

0 ≤ C2(1, f) =
σ2
Y ∗

σ2
W∗
− R2

Y ∗.W ∗ and E(1, f) = (1 − λf )λfR2
Y ∗.W ∗ ≤ 0 (or E(1, f) = −f 2 ≤ 0

when RY ∗.W ∗ = 0). Similarly, S1,2−

δ is sharp since for each d ∈ {λRY ∗.W ∗ : λ 6∈ (0, 1)}

and corresponding λd 6∈ (0, 1) when RY ∗.W ∗ 6= 0 (or d ∈ R when RY ∗.W ∗ = 0) setting

r = 1 and f = RY ∗.W ∗ − rd gives D(r, f) = d, 0 ≤ C2(1, RY ∗.W ∗ − rd) =
σ2
Y ∗

σ2
W∗
− R2

Y ∗.W ∗ ,

and E(1, RY ∗.W ∗ − rd) = (1 − λd)λdR
2
Y ∗.W ∗ ≤ 0 (or E(1, RY ∗.W ∗ − rd) = −d2 ≤ 0 when

RY ∗.W ∗ = 0).

Given that B(r, f) = RY.X −RW.XS(r, f), in order to show that S1,2−

β is sharp it suffices

to show that S1,2−

φ+δ is sharp. If RY ∗.W ∗ = 0 or κ = 0 then setting r = 1 and f = RY ∗.W ∗ , so

that s = S(r, f) = RY ∗.W ∗ , gives 0 ≤ C2(1, RY ∗.W ∗) =
σ2
Y ∗

σ2
W∗
−R2

Y ∗.W ∗ , and E(1, RY ∗.W ∗) = 0.

Otherwise, for RY ∗.W ∗ 6= 0, κ 6= 0, and each s ∈ S1,2−
φ+δ corresponding to λs, let f(1 − r) =

(RY ∗.W ∗ − rs) so that S(r, f) = s. Partition S1,2−
φ+δ and choose either r or f as follows. For

each s ∈ {RY ∗.W ∗(1− λ[κ( 1
RY ∗.W∗RW∗.Y ∗

− 1)]
1
2 ) : 0 ≤ λ ≤ 1}, set r = 1

1+κ
so that

C2(
1

1 + κ
,

1

1− r
(RY ∗.W ∗ − rs)) =

σ2
Y ∗

σ2
W ∗
− r

(1− r)
(s−RY ∗.W ∗)

2 −R2
Y ∗.W ∗

= (1− λ2
s)(

σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗) ≥ 0,
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and

E(
1

1 + κ
,

1

1− r
(RY ∗.W ∗ − rs)) =

1

(1− r)2
(RY ∗.W ∗ − rs)(s−RY ∗.W ∗)

=
(1 + κ)

κ2
{(1 + κ)RY ∗.W ∗ − [RY ∗.W ∗ − λsRY ∗.W ∗ [κ(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 ]}

× [−λsRY ∗.W ∗ [κ(
1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 ]

=
(1 + κ)

κ
[−λsR2

Y ∗.W ∗ [κ(
1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 − λ2

sR
2
Y ∗.W ∗(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)] ≤ 0.

Further, for each s ∈ {λ1
ρ
RY ∗.W ∗ + (1− λ)RY ∗.W ∗ : 0 < λ ≤ 1} set f = 0 so that

C2(
1

s
RY ∗.W ∗ , 0) =

σ2
Y ∗

σ2
W ∗
− (1− r)

r
(f −RY ∗.W ∗)

2 −R2
Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
− s

RY ∗.W ∗
R2
Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
− (λs

1

ρ
RY ∗.W ∗ + (1− λs)RY ∗.W ∗)RY ∗.W ∗

≥ σ2
Y ∗

σ2
W ∗
− (λs

1

RY ∗.W ∗RW ∗.Y ∗
RY ∗.W ∗ + (1− λs)RY ∗.W ∗)RY ∗.W ∗

= (1− λs)(
σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗) ≥ 0

and

E(
1

s
RY ∗.W ∗ , 0) =

s

RY ∗.W ∗
f(RY ∗.W ∗ − f) = 0.

Last, if RY ∗.W ∗RW ∗.Y ∗ ≤ 1
1+κ

then for each s ∈ {λ(1 + κ)RY ∗.W ∗ + (1 − λ)RY ∗.W ∗(1 +

[κ( 1
RY ∗.W∗RW∗.Y ∗

− 1)]
1
2 ) : 0 ≤ λ ≤ 1} set r = 1

1+κ
so that

C2(
1

1 + κ
,

1

1− r
(RY ∗.W ∗ − rs))

=
σ2
Y ∗

σ2
W ∗
− r

(1− r)
(s−RY ∗.W ∗)

2 −R2
Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
− 1

κ
(λs(1 + κ)RY ∗.W ∗ + (1− λs)RY ∗.W ∗(1 + [κ(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 −RY ∗.W ∗)

2 −R2
Y ∗.W ∗

=
σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗(λsκ
1
2 + (1− λs)(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)

1
2 )2 −R2

Y ∗.W ∗

≥ σ2
Y ∗

σ2
W ∗
−R2

Y ∗.W ∗(λs(
1

RY ∗.W ∗RW ∗.Y ∗
− 1)

1
2 + (1− λs)(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)

1
2 )2 −R2

Y ∗.W ∗ = 0
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and

E(
1

1 + κ
,

1

1− r
(RY ∗.W ∗ − rs)) =

1

(1− r)2
(RY ∗.W ∗ − rs)(s−RY ∗.W ∗)

=
(1 + κ)

κ2
[(1 + κ)RY ∗.W ∗ − λs(1 + κ)RY ∗.W ∗ − (1− λs)RY ∗.W ∗(1 + [κ(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 )]

× (λs(1 + κ)RY ∗.W ∗ + (1− λs)RY ∗.W ∗(1 + [κ(
1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 )−RY ∗.W ∗)

=
(1 + κ)

κ2
(1− λs)R2

Y ∗.W ∗(κ− [κ(
1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 )(λsκ+ (1− λs)[κ(

1

RY ∗.W ∗RW ∗.Y ∗
− 1)]

1
2 ) ≤ 0

since RY ∗.W ∗RW ∗.Y ∗ ≤ 1
1+κ

implies that κ− [κ( 1
RY ∗.W∗RW∗.Y ∗

− 1)]
1
2 ≤ 0.

Proof of Theorem 5.1 Recall that, for random column vectors A and B, we have

A′ = [E(A)′ − E(B)′RA.B] +B′RA.B + ε′A.B ≡ (1, B′)R∗A.B + ε′A.B.

Given observations {Ai, Bi}ni=1, denote the linear regression intercept (R̂0
A.B) and slope (R̂A.B)

estimators and the sample residual (ε̂A.B,i) by:

R̃A.B = (R̂0
A.B, R̂

′
A.B)′ ≡ (

1

n

n∑
i=1

(1, B′i)
′(1, B′i))

−1(
1

n

n∑
i=1

(1, B′i)
′A′i) and ε̂′A.B,i ≡ A′i−(1, B′i)R̃A.B.

Further, collect into R∗ and R̃ the following estimands and estimators

R∗ ≡ (R∗′Y.(W,X′)′ , R
∗′
W.(Y,X′)′ , R

∗′
Y.X , R

∗′
W.X ,

σ2
Y ∗

σ2
W ∗

)′ and R̃ ≡ (R̃′Y.(W,X′)′ , R̃
′
W.(Y,X′)′ , R̃

′
Y.X , R̃

′
W.X ,

∑n
i=1 ε̂

2
Y.X,i∑n

i=1 ε̂
2
W.X,i

)′.

Last, let µ̂2
A = 1

n

∑n
i=1AiA

′
i,

Q̂ ≡ diag{µ̂2
(1,W,X′)′ , µ̂

2
(1,Y,X′)′ , µ̂

2
(1,X′)′ , µ̂

2
(1,X′)′ , µ̂

2
ε̂W.X
},

and

M =
1

n

n∑
i=1

[(1,Wi, X
′
i)εY.(W,X′)′,i, (1, Yi, X

′
i)εY.(W,X′)′,i, (1, X ′i)

′εY.X,i, (1, X ′i)
′εW.X,i, ε

2
Y.X,i−σ2

Y ∗ ]
′.

Since V ar(Y,W,X ′) is finite, we have that Q is finite and nonsingular. For a symmetric

matrix C and a vector D, let C1 denote the submatrix that removes the last row and column

of C and let D1 be the subvector that removes the last row of D. Then

√
n(R̃1 −R∗1) = Q̂−1

1

√
nM1 = (Q̂−1

1 −Q−1
1 )
√
nM1 +Q−1

1

√
nM1,
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exists in probability for all n sufficiently large. Since (i) gives Q̂−1
1 −Q−1

1 = op(1) and (ii) gives
√
nM1

d→N(0,Ξ1), we obtain that
√
n(R̃1−R∗1) = Q−1

1

√
nM1+op(1)

d→N(0,Γ∗1). In particular,

it follows from
√
n(R̃Y.X − R∗Y.X) = Op(1), µ̂2

(1,X′)′
p→ µ2

(1,X′)′ , and 1
n

∑n
i=1εY.X,i(1, X

′
i)
′ =

E[εY.X(1, X ′)′] + op(1) = op(1) that

n−
1
2
∑n

i=1ε̂
2
Y.X,i = n−

1
2
∑n

i=1(εY.X,i − (1, X ′i)(R̃Y.X −R∗Y.X))2

= n−
1
2
∑n

i=1ε
2
Y.X,i + (R̃Y.X −R∗Y.X)′µ̂2

(1,X′)′
√
n(R̃Y.X −R∗Y.X)

− 2[
1

n

∑n
i=1εY.X,i(1, X

′
i)]
√
n(R̃Y.X −R∗Y.X)

= n−
1
2
∑n

i=1ε
2
Y.X,i + op(1).

Similarly, by (i), we have that

1

n

∑n
i=1ε̂

2
Y.X,i = E(ε2Y.X) + op(1) = σ2

Y ∗ + op(1) and
1

n

∑n
i=1ε̂

2
W.X,i = σ2

W ∗ + op(1).

Thus, since n−1/2
∑n

i=1 ε
2
Y.X,i is Op(1) by (ii), we have

√
n

1
n

∑n
i=1ε̂

2
Y.X,i

1
n

∑n
i=1ε̂

2
W.X,i

= (σ2
W ∗)

−1n−
1
2
∑n

i=1ε
2
Y.X,i + op(1).

Together with
√
n(R̃1 −R∗1) = Q−1

1

√
nM1 + op(1), we obtain by (i) and (ii) that

√
n(R̃−R∗) = Q−1

√
nM + op(1)

d→N(0,Γ∗)

and thus that the subvector
√
n(R̂−R)

d→N(0,Γ).
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Figure 1: Sharp Identification Regions for κ = +∞(light), 2, 1, 0.5(dark).

45



Figure 2: Returns Estimates and 95% Confidence Regions for κ ∈ [0, 30].
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Table 1: Numerical Example (DGP: ρ = 0.685, φ = 0.5, δ = 0.9, β1 = 1 β2 = 0.7)

RY.(W,X′)′ S1,c
θ S1

θ S1,2+

θ S1,2
θ

κ→∞
ρ [0.832, 1] (0, 1] (0, 1] (0, 1]
φ 1.116 0 [−∞,∞] [0, 1.116] R\(0, 1.116)
δ [1.116, 1.341] [−∞,∞] [0,∞] R\(0, 1.116)
β1 1.207 [1.043, 1.207] [−∞,∞] [−∞, 1.207] [1.043,∞]
β2 0.745 [0.709, 0.745] [−∞,∞] [−∞, 0.745] [0.709,∞]

κ = 2
ρ [0.832, 1] [0.333, 1] [0.333, 1] [0.333, 1]
φ 0 [−∞,∞] [0, 1.116] R\(0, 1.116)
δ [1.116, 1.341] [−∞,∞] [0, 1.341] R\(0, 1.116)
β1 [1.043, 1.207] [0.691, 1.722] [0.691, 1.207] [1.043, 1.722]
β2 [0.709, 0.745] [0.633, 0.857] [0.633, 0.745] [0.709, 0.857]

κ = 1
ρ [0.832, 1] [0.5, 1] [0.5, 1] [0.5, 1]
φ 0 [−∞,∞] [0, 1.116] R\(0, 1.116)
δ [1.116, 1.341] [−∞,∞] [0, 1.341] R\(0, 1.116)
β1 [1.043, 1.207] [0.842, 1.571] [0.842, 1.207] [1.043, 1.571]
β2 [0.709, 0.745] [0.666, 0.824] [0.666, 0.745] [0.709, 0.824]

κ = 0.5
ρ [0.832, 1] [0.667, 1] [0.667, 1] [0.667, 1]
φ 0 [−∞,∞] [0, 1.116] R\(0, 1.116)
δ [1.116, 1.341] [−∞,∞] [0, 1.341] R\(0, 1.116)
β1 [1.043, 1.207] [0.949, 1.464] [0.949, 1.207] [1.043, 1.464]
β2 [0.709, 0.745] [0.689, 0.801] [0.689, 0.745] [0.709, 0.801]

Table 1 reports the population regression estimands and sharp projected identification regions from Section

3 for κ = +∞, 2, 1, 0.5. rY ∗,W∗ = 0.9124.
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Table 2: Summary Statistics for the CS Sample of 1165 Institutions.

Variable Name Mean Std. Dev. Min Max

Mean earnings MnEarnWnEP6 36985.24 9513.16 15700 102700
Share earning over $25K/year Gt25KP6 0.6528 0.1077 0.162 0.918
Average SAT score SATAvg 1052.76 119.93 726 1491
Private control indicator ControlInd 0.6206 0.4854 0 1
Grad degree-awarding indicator HDeg 0.8635 0.3434 0 1
Undergraduate enrollment UGDS 5955.3 7143.88 178 56232
Share of Blacks UGDSBlack 0.1281 0.1858 0 0.9955
Share of Hispanics UGDSHisp 0.0774 0.1097 0 1
Share of Asians UGDSAsian 0.0397 0.0593 0 0.5054
Share of nonresident aliens UGDSnRA 0.0291 0.0342 0 0.3617
Share of females Female 0.5869 0.1076 0.0773 0.986
Share of dependents Dependent 0.7504 0.1645 0.1238 0.9886
% with tertiary-educated parent ParEdPctPS 0.6556 0.1025 0.4108 0.9381
Average family income FamInc 70495.26 21358.66 17501.84 143865.7
Average cost of attendance CostT4 30090.46 11886.28 9917 57590
Average net price NPT4 17638.82 6529.17 1081 39560
Percent with Federal student loan PctFLoan 0.6032 0.1618 0.0334 1
Percent with Pell grant PctPell 0.3679 0.1452 0.0738 0.9351
Median student debt GDebtMdn 19598.26 3732.304 4500 35500
Percent of degrees in 38 fields PCIP ##

Percent of Education degrees PCIP13 0.0804 0.0789 0 0.6452
Percent of Engineering degrees PCIP14 0.0316 0.0903 0 0.9088

Expenditure per student InExpFTE 9416.8 7578.22 1938 107380
Completion rate C150 4 0.5489 0.1697 0.049 0.9779

10 region indicators Region ##
New England indicator Region 1 0.0833 0.2764 0 1
Southeast indicator Region 5 0.2592 0.4384 0 1

12 locale indicators Locale ##
City indicator Locale 11 0.206 0.4046 0 1
Rural remote indicator Locale 43 0.0069 0.0826 0 1

Minority-serving indicator SpecMis 0.1554 0.3624 0 1
Women-only college indicator WomenOnly 0.012 0.109 0 1
Religious affiliation indicator RelAffilInd 0.4094 0.4919 0 1
Share of Whites UGDSWhite 0.6409 0.2222 0 0.9666
% Nat. Hawaiian/Pacific Islander UGDSNHPI 0.0023 0.0083 0 0.1448
% two or more races UGSD2mor 0.015 0.0178 0 0.2617
% American Indian/Alaska Nat. UGDSAian 0.0077 0.0209 0 0.325
% whose race is unknown UGDSUnkn 0.0598 0.0721 0 0.675
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Table 3: The Returns to College Selectivity and Characteristics (κ = 1)

R̂Y.(W,X′)′ Ŝ1,c
θ Ŝ1

θ Ŝ1,2+

θ

10−4×SATAvg 5.105 0 [−∞,∞] [0, 5.105]
(3.635, 6.576) (0, 0) (−∞,∞) (0, 6.576)

10−4×U (ability) [5.105, 10.21] [−∞,∞] [0, 10.21]
(3.635, 13.15) (−∞,∞) (0, 13.15)

10−2×ControlInd 2.263 [2.263, 3.054] [−1.474, 6.001] [2.263, 3.054]
(−2.849, 7.376) (−2.851, 8.328) (−8.163, 13) (−2.851, 8.328)

10−2×HDeg 4.228 [4.228, 4.697] [2.012, 6.444] [4.228, 4.697]
(1.747, 6.708) (1.746, 7.263) (−1.496, 10.08) (1.746, 7.263)

log(UGDS) 0.022 [0.014, 0.022] [−0.013, 0.056] [0.014, 0.022]
(0.006, 0.037) (−0.002, 0.037) (−0.034, 0.075) (−0.002, 0.037)

UGDSBlack 0.307 [0.307, 0.353] [0.087, 0.526] [0.307, 0.353]
(0.229, 0.385) (0.229, 0.437) (−0.035, 0.648) (0.229, 0.437)

UGDSHisp 0.255 [0.255, 0.337] [−0.129, 0.640] [0.255, 0.337]
(0.133, 0.377) (0.133, 0.470) (−0.328, 0.852) (0.133, 0.470)

UGDSAsian 1.035 [0.893, 1.035] [0.365, 1.704] [0.893, 1.035]
(0.727, 1.343) (0.576, 1.343) (0.022, 2.121) (0.576, 1.343)

UGDSnRA 0.187 [0.187, 0.191] [0.171, 0.203] [0.187, 0.191]
(−0.107, 0.481) (−0.107, 0.485) (−0.257, 0.599) (−0.107, 0.485)

Female −0.401 [−0.401,−0.391] [−0.450,−0.353] [−0.401,−0.391]
(−0.536,−0.267) (−0.536,−0.257) (−0.622,−0.192) (−0.536,−0.257)

Dependent −0.570 [−0.570,−0.519] [−0.811,−0.329] [−0.570,−0.519]
(−0.655,−0.485) (−0.655,−0.428) (−0.927,−0.213) (−0.655,−0.428)

ParEdPctPS −0.442 [−0.749,−0.442] [−1.895, 1.011] [−0.749,−0.442]
(−0.601,−0.283) (−0.972,−0.283) (−2.134, 1.246) (−0.972,−0.283)

log(FamInc) 0.307 [0.287, 0.307] [0.212, 0.401] [0.287, 0.307]
(0.226, 0.387) (0.203, 0.387) (0.091, 0.518) (0.203, 0.387)

log(CostT4) 0.055 [−0.014, 0.055] [−0.272, 0.383] [−0.014, 0.055]
(−0.018, 0.129) (−0.095, 0.129) (−0.376, 0.482) (−0.095, 0.129)

log(NPT4) −0.048 [−0.048,−0.018] [−0.189, 0.093] [−0.048,−0.018]
(−0.094,−0.003) (−0.094, 0.028) (−0.266, 0.155) (−0.094, 0.028)

PctFLoan 0.235 [0.235, 0.266] [0.088, 0.382] [0.235, 0.266]
(0.120, 0.350) (0.120, 0.383) (−0.067, 0.538) (0.120, 0.383)

PctPell −0.699 [−0.699,−0.680] [−0.792,−0.606] [−0.699,−0.680]
(−0.870,−0.529) (−0.870,−0.502) (−1.029,−0.353) (−0.870,−0.502)

log(GDebtMdn) −0.107 [−0.107,−0.078] [−0.244, 0.031] [−0.107,−0.078]
(−0.168,−0.046) (−0.168,−0.017) (−0.343, 0.109) (−0.168,−0.017)

Y is log(MnEarnWnEp6), W is SATAvg, and U is scholastic ability. In addition to the variables listed above, X contains 8

region indicators and 11 locale indicators as well as the shares of the remaining available race categories and indicators for

whether the university has a special mission, is a women-only college, or has a religious affiliation. 95% confidence regions

are reported in parentheses. r̂Y ∗,W∗ = 0.2070 with 99.99% CR (0.0958, 0.3131).
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Table 4: The Returns to College Selectivity and Characteristics Given Major Choice (κ = 1)

R̂Y.(W,X′)′ Ŝ1,c
θ Ŝ1

θ Ŝ1,2+

θ

10−4×SATAvg 4.790 0 [−∞,∞] [0, 4.790]
(3.487, 6.094) (0, 0) (−∞,∞) (0, 6.094)

10−4×U (ability) [4.790, 9.580] [−∞,∞] [0, 9.580]
(3.486, 12.19) (−∞,∞) (0, 12.19)

10−2×ControlInd −2.085 [−2.737,−2.085] [−4.816, 0.646] [−2.737,−2.085]
(−5.978, 1.808) (−6.817, 1.810) (−10.41, 5.920) (−6.817, 1.810)

10−2×HDeg 0.145 [0.145, 0.251] [−0.299, 0.589] [0.145, 0.251]
(−1.721, 2.011) (−1.722, 2.185) (−2.990, 3.342) (−1.722, 2.185)

log(UGDS) 0.008 [−0.001, 0.008] [−0.031, 0.048] [−0.001, 0.008]
(−0.003, 0.020) (−0.014, 0.020) (−0.047, 0.064) (−0.014, 0.020)

UGDSBlack 0.170 [0.170, 0.226] [−0.062, 0.402] [0.170, 0.226]
(0.103, 0.237) (0.103, 0.3) (−0.157, 0.5) (0.103, 0.3)

UGDSHisp 0.216 [0.216, 0.297] [−0.123, 0.556] [0.216, 0.297]
(0.094, 0.338) (0.094, 0.434) (−0.273, 0.742) (0.094, 0.434)

UGDSAsian 0.765 [0.687, 0.765] [0.438, 1.092] [0.687, 0.765]
(0.540, 0.990) (0.462, 0.990) (0.191, 1.391) (0.462, 0.990)

UGDSnRA 0.137 [0.137, 0.140] [0.126, 0.148] [0.137, 0.140]
(−0.083, 0.357) (−0.083, 0.357) (−0.205, 0.457) (−0.083, 0.357)

Female −0.202 [−0.229,−0.202] [−0.315,−0.089] [−0.229,−0.202]
(−0.306,−0.098) (−0.337,−0.098) (−0.462, 0.064) (−0.337,−0.098)

Dependent −0.453 [−0.453,−0.401] [−0.670,−0.235] [−0.453,−0.401]
(−0.528,−0.378) (−0.528,−0.322) (−0.781,−0.134) (−0.528,−0.322)

ParEdPctPS −0.044 [−0.272,−0.044] [−1, 0.912] [−0.272,−0.044]
(−0.177, 0.089) (−0.437, 0.089) (−1.197, 1.092) (−0.437, 0.089)

log(FamInc) 0.293 [0.268, 0.293] [0.186, 0.401] [0.268, 0.293]
(0.225, 0.362) (0.194, 0.362) (0.088, 0.490) (0.194, 0.362)

log(CostT4) 0.093 [0.054, 0.093] [−0.070, 0.255] [0.054, 0.093]
(0.037, 0.149) (−0.005, 0.149) (−0.153, 0.332) (−0.005, 0.149)

log(NPT4) −0.026 [−0.026,−0.008] [−0.098, 0.046] [−0.026,−0.008]
(−0.062, 0.011) (−0.062, 0.028) (−0.155, 0.097) (−0.062, 0.028)

PctFLoan 0.072 [0.072, 0.098] [−0.034, 0.178] [0.072, 0.098]
(−0.009, 0.154) (−0.009, 0.180) (−0.150, 0.286) (−0.009, 0.180)

PctPell −0.306 [−0.307,−0.306] [−0.309,−0.303] [−0.307,−0.306]
(−0.438,−0.174) (−0.445,−0.168) (−0.502,−0.117) (−0.445,−0.168)

log(GDebtMdn) −0.144 [−0.144,−0.123] [−0.233,−0.056] [−0.144,−0.123]
(−0.198,−0.091) (−0.198,−0.070) (−0.307, 0.009) (−0.198,−0.070)

PCIP13 (Educ) −0.226 [−0.226,−0.159] [−0.508, 0.055] [−0.226,−0.159]
(−0.383,−0.069) (−0.383, 0.005) (−0.743, 0.288) (−0.383, 0.005)

PCIP14 (Eng) 0.284 [0.272, 0.284] [0.231, 0.337] [0.272, 0.284]
(0.102, 0.467) (0.085, 0.467) (−0.009, 0.578) (0.085, 0.467)

The results use the specification in Table 3 and augment X with the (nonzero in the sample) percentage of degrees awarded

in each field of study according to the Classification of Instructional Programs (we leave out Social Science, PCIP45). 95%

confidence regions are reported in parentheses. Table 7 in the Appendix reports the estimates for the CIP fields of study

coefficients. r̂Y ∗,W∗ = 0.2323 with 99.99% CR (0.1220, 0.3369).
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Table 5: The Return to Selectivity Given Major, Expenditures, and Completion (κ = 1)

R̂Y.(W,X′)′ Ŝ1,c
θ Ŝ1

θ Ŝ1,2+

θ

10−4×SATAvg 2.750 0 [−∞,∞] [0, 2.750]
(1.317, 4.183) (0, 0) (−∞,∞) (0, 4.183)

10−4×U (ability) [2.750, 5.5] [−∞,∞] [0, 5.5]
(1.316, 8.367) (−∞,∞) (0, 8.367)

10−2×ControlInd −0.231 [−0.505,−0.231] [−2.395, 1.934] [−0.505,−0.231]
(−4.004, 3.543) (−4.348, 3.544) (−7.848, 7.256) (−4.348, 3.544)

10−2×HDeg 0.264 [0.264, 0.365] [−0.532, 1.061] [0.264, 0.365]
(−1.507, 2.036) (−1.508, 2.167) (−3.095, 3.768) (−1.508, 2.167)

log(UGDS) 0.003 [0.001, 0.003] [−0.013, 0.018] [0.001, 0.003]
(−0.009, 0.014) (−0.011, 0.014) (−0.028, 0.035) (−0.011, 0.014)

UGDSBlack 0.140 [0.140, 0.169] [−0.084, 0.364] [0.140, 0.169]
(0.077, 0.204) (0.077, 0.238) (−0.177, 0.458) (0.077, 0.238)

UGDSHisp 0.212 [0.212, 0.249] [−0.074, 0.499] [0.212, 0.249]
(0.105, 0.320) (0.105, 0.367) (−0.206, 0.677) (0.105, 0.367)

UGDSAsian 0.682 [0.664, 0.682] [0.541, 0.824] [0.664, 0.682]
(0.457, 0.908) (0.441, 0.908) (0.304, 1.118) (0.441, 0.908)

UGDSnRA 0.070 [0.070, 0.071] [0.059, 0.081] [0.070, 0.071]
(−0.133, 0.273) (−0.133, 0.273) (−0.225, 0.342) (−0.133, 0.273)

Female −0.226 [−0.226,−0.226] [−0.229,−0.222] [−0.226,−0.226]
(−0.329,−0.123) (−0.329,−0.123) (−0.382,−0.062) (−0.329,−0.123)

Dependent −0.457 [−0.457,−0.426] [−0.698,−0.215] [−0.457,−0.426]
(−0.530,−0.384) (−0.530,−0.348) (−0.804,−0.118) (−0.530,−0.348)

ParEdPctPS −0.115 [−0.207,−0.115] [−0.842, 0.612] [−0.207,−0.115]
(−0.241, 0.012) (−0.354, 0.012) (−1.038, 0.783) (−0.354, 0.012)

log(FamInc) 0.273 [0.269, 0.273] [0.248, 0.297] [0.269, 0.273]
(0.207, 0.338) (0.202, 0.338) (0.157, 0.382) (0.202, 0.338)

log(CostT4) 0.038 [0.027, 0.038] [−0.046, 0.123] [0.027, 0.038]
(−0.016, 0.093) (−0.027, 0.093) (−0.127, 0.2) (−0.027, 0.093)

log(NPT4) −0.007 [−0.007,−0.003] [−0.036, 0.022] [−0.007,−0.003]
(−0.042, 0.029) (−0.042, 0.032) (−0.092, 0.070) (−0.042, 0.032)

PctFLoan 0.064 [0.064, 0.079] [−0.059, 0.187] [0.064, 0.079]
(−0.015, 0.143) (−0.015, 0.160) (−0.168, 0.292) (−0.015, 0.160)

PctPell −0.272 [−0.278,−0.272] [−0.321,−0.223] [−0.278,−0.272]
(−0.397,−0.147) (−0.406,−0.147) (−0.503,−0.052) (−0.406,−0.147)

log(GDebtMdn) −0.129 [−0.129,−0.123] [−0.180,−0.078] [−0.129,−0.123]
(−0.178,−0.080) (−0.178,−0.073) (−0.244,−0.014) (−0.178,−0.073)

log(InExpFTE) 0.075 [0.070, 0.075] [0.035, 0.116] [0.070, 0.075]
(0.053, 0.098) (0.047, 0.098) (0.002, 0.151) (0.047, 0.098)

C150 4 0.185 [0.112, 0.185] [−0.390, 0.760] [0.112, 0.185]
(0.103, 0.268) (0.008, 0.268) (−0.506, 0.878) (0.008, 0.268)

The results use the specification in Table 4 and augment X with log(InExpFTE) and C1504. 95% confidence regions are

reported in parentheses. Table 8 in the Appendix reports the estimates for the CIP fields of study coefficients.

r̂Y ∗,W∗ = 0.1257 with 99.99% CR (0.0124, 0.2358).
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Table 6: Field of Study According to the Classification of Instructional Programs

PCIPxx CIP field of study
PCIP01 Agriculture, Agriculture Operations, and Related Sciences
PCIP03 Natural Resources and Conservation
PCIP04 Architecture and Related Services
PCIP05 Area, Ethnic, Cultural, Gender, and Group Studies
PCIP09 Communication, Journalism, and Related Programs
PCIP10 Communications Technologies/Technicians and Support Services
PCIP11 Computer and Information Sciences and Support Services
PCIP12 Personal and Culinary Services
PCIP13 Education
PCIP14 Engineering
PCIP15 Engineering Technologies and Engineering-Related Fields
PCIP16 Foreign Languages, Literatures, and Linguistics
PCIP19 Family and Consumer Sciences/Human Sciences
PCIP22 Legal Professions and Studies
PCIP23 English Language and Literature/Letters
PCIP24 Liberal Arts and Sciences, General Studies and Humanities
PCIP25 Library Science
PCIP26 Biological and Biomedical Sciences
PCIP27 Mathematics and Statistics
PCIP30 Multi/Interdisciplinary Studies
PCIP31 Parks, Recreation, Leisure, and Fitness Studies
PCIP38 Philosophy and Religious Studies
PCIP39 Theology and Religious Vocations
PCIP40 Physical Sciences
PCIP41 Science Technologies/Technicians
PCIP42 Psychology
PCIP43 Homeland Security, Law Enforcement, Firefighting and Related Protective Services
PCIP44 Public Administration and Social Service Professions
PCIP45 Social Sciences
PCIP46 Construction Trades
PCIP47 Mechanic and Repair Technologies/Technicians
PCIP48 Precision Production
PCIP49 Transportation and Materials Moving
PCIP50 Visual and Performing Arts
PCIP51 Health Professions and Related Programs
PCIP52 Business, Management, Marketing, and Related Support Services
PCIP54 History
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Table 7: The Returns to College Selectivity and Characteristics Given Major Choice (κ = 1)

R̂Y.(W,X′)′ CR0.95(RY.(W,X′)′) Ŝ1,2+

θ CRθ
0.95(S1,2+

θ )

PCIP01 0.002 (−0.292, 0.296) [0.002, 0.099] (−0.292, 0.403)
PCIP03 −0.835 (−1.226,−0.443) [−0.835,−0.758] (−1.226,−0.360)
PCIP04 −0.334 (−0.727, 0.059) [−0.334,−0.264] (−0.727, 0.1)
PCIP05 −0.933 (−1.897, 0.031) [−1.147,−0.933] (−2.127, 0.031)
PCIP09 −0.132 (−0.357, 0.092) [−0.132,−0.037] (−0.357, 0.201)
PCIP10 0.031 (−0.589, 0.650) [0.031, 0.147] (−0.589, 0.817)
PCIP11 −0.217 (−0.511, 0.077) [−0.217,−0.214] (−0.518, 0.091)
PCIP12 −0.137 (−1.719, 1.444) [−0.137, 0.052] (−1.720, 1.445)
PCIP13 −0.226 (−0.383,−0.069) [−0.226,−0.159] (−0.383, 0.005)
PCIP14 0.284 (0.102, 0.467) [0.272, 0.284] (0.085, 0.467)
PCIP15 0.138 (−0.128, 0.403) [0.138, 0.241] (−0.128, 0.516)
PCIP16 −0.612 (−1.063,−0.162) [−0.612,−0.471] (−1.063, 0.016)
PCIP19 −0.153 (−0.382, 0.076) [−0.153,−0.050] (−0.382, 0.194)
PCIP22 −0.252 (−0.942, 0.438) [−0.309,−0.252] (−1.036, 0.439)
PCIP23 −0.794 (−1.152,−0.435) [−0.794,−0.763] (−1.152,−0.380)
PCIP24 −0.260 (−0.425,−0.095) [−0.260,−0.196] (−0.425,−0.027)
PCIP25 2.530 (−1.063, 6.124) [2.530, 3.743] (−1.065, 7.630)
PCIP26 −0.007 (−0.251, 0.237) [−0.007, 0.031] (−0.251, 0.278)
PCIP27 0.073 (−0.615, 0.762) [−0.232, 0.073] (−1, 0.762)
PCIP30 −0.149 (−0.359, 0.061) [−0.149,−0.058] (−0.359, 0.160)
PCIP31 −0.283 (−0.508,−0.058) [−0.283,−0.160] (−0.508, 0.073)
PCIP38 −0.410 (−0.669,−0.152) [−0.410,−0.372] (−0.669,−0.105)
PCIP39 −0.257 (−0.419,−0.096) [−0.257,−0.203] (−0.419,−0.039)
PCIP40 0.018 (−0.886, 0.923) [−0.148, 0.018] (−1.111, 0.923)
PCIP41 −1.952 (−4.769, 0.864) [−1.952,−1.322] (−4.770, 1.660)
PCIP42 −0.343 (−0.561,−0.125) [−0.343,−0.265] (−0.561,−0.050)
PCIP43 −0.117 (−0.292, 0.057) [−0.117,−0.007] (−0.292, 0.180)
PCIP44 0.039 (−0.187, 0.265) [0.039, 0.212] (−0.187, 0.457)
PCIP46 0.239 (−2.019, 2.497) [0.007, 0.239] (−2.175, 2.498)
PCIP47 −1.569 (−3.633, 0.495) [−1.579,−1.569] (−3.634, 0.496)
PCIP48 0.302 (−1.697, 2.301) [0.252, 0.302] (−1.748, 2.302)
PCIP49 0.727 (0.257, 1.197) [0.727, 0.836] (0.257, 1.292)
PCIP50 −0.436 (−0.599,−0.273) [−0.436,−0.368] (−0.599,−0.202)
PCIP51 0.297 (0.134, 0.459) [0.297, 0.376] (0.134, 0.543)
PCIP52 0.046 (−0.111, 0.204) [0.046, 0.122] (−0.111, 0.282)
PCIP54 0.055 (−0.371, 0.481) [0.055, 0.122] (−0.371, 0.555)

This table reports the estimates for the coefficients on the CIP fields of study under the specification in

Table 4.
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Table 8: The Return to Selectivity Given Major, Expenditures, and Completion (κ = 1)

R̂Y.(W,X′)′ CR0.95(RY.(W,X′)′) Ŝ1,2+

θ CRθ
0.95(S1,2+

θ )

PCIP01 0.006 (−0.275, 0.287) [0.006, 0.051] (−0.275, 0.337)
PCIP03 −0.806 (−1.190,−0.421) [−0.806,−0.764] (−1.190,−0.373)
PCIP04 −0.310 (−0.637, 0.018) [−0.310,−0.286] (−0.638, 0.035)
PCIP05 −1.123 (−2.080,−0.165) [−1.203,−1.123] (−2.156,−0.165)
PCIP09 −0.132 (−0.350, 0.086) [−0.132,−0.094] (−0.350, 0.125)
PCIP10 0.019 (−0.578, 0.615) [0.019, 0.072] (−0.578, 0.690)
PCIP11 −0.145 (−0.420, 0.129) [−0.151,−0.145] (−0.429, 0.129)
PCIP12 −0.019 (−1.554, 1.516) [−0.019, 0.030] (−1.555, 1.517)
PCIP13 −0.185 (−0.333,−0.037) [−0.185,−0.161] (−0.333,−0.012)
PCIP14 0.312 (0.139, 0.485) [0.303, 0.312] (0.129, 0.485)
PCIP15 0.167 (−0.092, 0.426) [0.167, 0.206] (−0.092, 0.469)
PCIP16 −0.709 (−1.114,−0.305) [−0.709,−0.634] (−1.114,−0.210)
PCIP19 −0.119 (−0.351, 0.114) [−0.119,−0.078] (−0.351, 0.155)
PCIP22 −0.027 (−0.737, 0.683) [−0.080,−0.027] (−0.798, 0.684)
PCIP23 −0.670 (−1.009,−0.330) [−0.670,−0.670] (−1.018,−0.322)
PCIP24 −0.170 (−0.336,−0.004) [−0.170,−0.159] (−0.337, 0.004)
PCIP25 1.030 (−2.747, 4.806) [1.030, 1.637] (−2.749, 5.350)
PCIP26 0.047 (−0.190, 0.283) [0.047, 0.054] (−0.190, 0.293)
PCIP27 −0.153 (−0.791, 0.485) [−0.279,−0.153] (−0.949, 0.486)
PCIP30 −0.098 (−0.301, 0.106) [−0.098,−0.064] (−0.302, 0.142)
PCIP31 −0.225 (−0.443,−0.007) [−0.225,−0.174] (−0.443, 0.045)
PCIP38 −0.359 (−0.580,−0.138) [−0.359,−0.339] (−0.580,−0.109)
PCIP39 −0.218 (−0.373,−0.062) [−0.218,−0.194] (−0.373,−0.040)
PCIP40 0.049 (−0.829, 0.928) [−0.041, 0.049] (−0.961, 0.929)
PCIP41 −1.254 (−3.751, 1.243) [−1.254,−1.181] (−3.756, 1.395)
PCIP42 −0.270 (−0.480,−0.060) [−0.270,−0.245] (−0.480,−0.039)
PCIP43 −0.059 (−0.228, 0.110) [−0.059,−0.019] (−0.228, 0.153)
PCIP44 0.036 (−0.187, 0.259) [0.036, 0.114] (−0.187, 0.348)
PCIP46 −0.369 (−2.384, 1.645) [−0.376,−0.369] (−2.416, 1.664)
PCIP47 −1.374 (−3.363, 0.614) [−1.428,−1.374] (−3.415, 0.615)
PCIP48 0.407 (−1.741, 2.554) [0.361, 0.407] (−1.744, 2.555)
PCIP49 0.652 (0.204, 1.099) [0.652, 0.721] (0.204, 1.167)
PCIP50 −0.405 (−0.559,−0.251) [−0.405,−0.378] (−0.559,−0.225)
PCIP51 0.319 (0.162, 0.477) [0.319, 0.351] (0.161, 0.509)
PCIP52 0.122 (−0.027, 0.271) [0.122, 0.149] (−0.027, 0.297)
PCIP54 0.117 (−0.295, 0.529) [0.117, 0.131] (−0.295, 0.543)

This table reports the estimates for the coefficients on the CIP fields of study under the specification in

Table 5.
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Table 9: Variables Definition, Corresponding College Scorecard Variables, and Data Files

Variable Definition CS Variable CS Variable Definition CS Datafile

Data using the pooled cohorts that enrolled in award years 2006-2007 and 2007-2008
MnEarnWnEP6 mn earn wne p6 Mean earnings (in 2015 USD) of stu-

dents working and not enrolled 6 years
after entry

2012-13

Gt25KP6 GT 25K P6 Share of non-enrolled students earn-
ing over $25,000/year (in 2015 USD) 6
years after entry

2012-13

Female FEMALE Share of female students 2007-08
Dependent DEPENDENT Share of dependent students 2007-08
FamInc FAMINC Average family income (in 2015 USD) 2007-08
ParEdPctPS PAR ED PCT PS Percent of students whose parents’

highest educational level is some form
of postsecondary education

2007-08

Data based on the cohort that enrolled in fall 2007 or academic year 2007-2008
SATAvg SAT AVG Average SAT equivalent score of stu-

dents admitted
2007-08

C150 4 C150 4 Completion rate within 150% of ex-
pected time to completion for full-time,
first-time, degree/certificate-seeking
students at 4 year institutions

2013-14

Data using the pooled cohorts that completed in award years 2009-2010 and 2010-2011
GDebtMdn GRAD DEBT MDN Median debt for students who have

completed
2010-11

Data based on Fall 2010, award or academic year 2010-11, or fiscal year 2011
Main MAIN Indicator for main campus 2010-11
PredDeg PREDDEG Predominant degree awarded (not clas-

sified: 0, certificate: 1, associate: 2,
bachelor’s: 3, : entirely graduate: 4)

2011-12

ControlInd: Indicator
that is 1 if CONTROL
is 2

CONTROL Control of Institution (1: public, 2: pri-
vate nonprofit, 3: private for profit)

2010-11

HDeg: Indicator is 1 if
HIGHDEG is 4

HIGHDEG Highest degree awarded (non-degree: 0,
certificate: 1, associate: 2, bachelor’s:
3, graduate: 4)

2011-12

PctFLoan PCTFLOAN Percent of all federal undergraduate
students receiving a federal student
loan

2011-12

PctPell PCTPELL Percentage of undergraduates who re-
ceive a Pell Grant

2011-12

UGDS UGDS Enrollment of undergraduate
certificate/degree-seeking students

2010-11
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UGDSBlack,
UGDSHisp,
UGDSAsian,
UGDSnRA,
UGDSWhite,
UGDSAIAN,
UGDSNHPI,
UGDS2More,
UGDSUnkn

UGDS BLACK,
UGDS HISP,
UGDS ASIAN,
UGDS NRA,
UGDS WHITE,
UGDS AIAN,
UGDS NHPI,
UGDS 2MOR,
UGDS UNKN

Total share of enrollment of under-
graduate degree-seeking students who
are Black, Hispanic, Asian, Non-
Resident Aliens, White, American In-
dian/Alaska Native, Native Hawai-
ian/Pacific Islander, 2 or more races,
or whose race is unknown

2010-11

PCIP## (38 vari-
ables)

PCIP## Percentage of degrees awarded in one
of 38 fields of study according to
the Classification of Instructional Pro-
grams (CIP)

2011-12

InExpFTE INEXPFTE Instructional expenditures per full-time
equivalent student (includes gradudate
students)

2011-12

Data based on the cohort that enrolled in academic year 2010-11
CostT4 =COSTT4 A
+COSTT4 P

COSTT4 A/
COSTT4 P

Average cost of attendance for
academic/program-year institutions

2011-12

NPT4 =NPT4 PUB
+NPT4 PRIV

NPT4 PUB/
NPT4 PRIV

Average net price for Title IV institu-
tions for public/private institutions

2011-12

Data based on academic year 2015-2016 or 2009-2010
Region# (10 region
indicators)

REGION Region (0: U.S. Service Schools, 1:
New England, 2: Mid East, 3: Great
Lakes, 4: Plains, 5: Southeast, 6:
Southwest, 7: Rocky Mountains, 8: Far
West, 9: Outlying Areas)

2010-11

Locale## (12 locale
indicators)

LOCALE Locale of the institution (11-13: city
large/midsize/small, 21-23: suburb
large/midsize/small, 31-33: town
fringe/distant/remote, 41-43: rural
fringe/distant/remote)

2014-15

RelAffilInd (Indicator
that is -1 if not re-
ported, 0 if not ap-
plicable, and 1 other-
wise)

RelAffil Religous affiliation of the institution
(65 values: either not reported, not ap-
plicable, or one of 63 listed religious af-
filiations)

2014-15

Data based on fiscal or calender year 2016
SpecMis: Indicator
that is 1 if any of the
source variables is 1

HBCU, PBI,
ANNHI, TRIBAL,
AANAPII, HSI,
NANTI

Flags for institutions that are/serve
historically Black, predominantly
Black, Alaska/Hawaiian native,
Tribal, Asian American/Native Amer-
ican/Pacific Islander, Hispanic, or
Native American non-Tribal

2014-15

WomenOnly WOMENONLY Flag for women-only college 2014-15
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